Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 10, pp 3206–3212 | Cite as

An evaluation of the effectiveness of medial patellofemoral ligament reconstruction using an anatomical tunnel site

  • Kars P. Valkering
  • Aysha Rajeev
  • Nick Caplan
  • Wim E. Tuinebreijer
  • Deiary F. Kader



Medial patellofemoral ligament (MPFL) reconstruction for recurrent patellar instability has gained popularity, and anatomical and biomechanical studies have recently altered our operative techniques. The aim of this study was to report the clinical outcome of this new anatomical MPFL reconstructive technique and investigate whether correlating factors could be identified.


Between 2009 and 2012, a total of 31 consecutive patients underwent MPFL reconstruction using an autologous gracilis graft and anatomical tunnel placement. Pre- and post-operative data were collected as a part of routine clinical practice. The preoperative assessment included a rotational profile CT scan of the lower extremity according to the Lyon protocol with TT–TG distance measurement. Outcomes were evaluated with the Kujala and Norwich patella instability (NPI) scores preoperatively and at follow-up (1.5–5.1 years).


A significant improvement in both the Kujala (p < 0.001) and NPI (p = 0.012) scores was recorded. A medium and large negative correlations were found between TT–TG distance and Kujala score improvement (ρ = −0.48, p = 0.020) and NPI score improvement (ρ = −0.83, p = 0.042), respectively. Multiple regression analysis identified TT–TG distance, Beighton score and BMI as factors explaining the variance of Kujala score improvement.


Anatomical MPFL reconstruction with the gracilis autograft for patellar instability resulted in good outcome. This underlines the importance of anatomical tunnel placement in MPFL reconstruction. With a precise preoperative work-up, factors can be identified that may guide selecting the optimal operative strategy and improve counselling of the patient.

Level of evidence

Case series, Level IV.


Knee Patella Instability Medial patellofemoral ligament Kujala score Norwich Patella instability score TT–TG Beighton score 


Compliance with ethical standards

Conflict of interest

Kars P Valkering, Aysha Rajeev, Nick Caplan, Wim E Tuinebreijer, Deiary F Kader declare that they have no conflict of interest.


There is no funding source.

Ethical approval

For this type of study formal consent is not required.


  1. 1.
    Balcarek P, Jung K, Ammon J, Walde TA, Frosch S, Schuttrumpf JP, Sturmer KM, Frosch KH (2010) Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle-trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 38:2320–2327CrossRefPubMedGoogle Scholar
  2. 2.
    Balcarek P, Jung K, Frosch KH, Sturmer KM (2011) Value of the tibial tuberosity-trochlear groove distance in patellar instability in the young athlete. Am J Sports Med 39:1756–1761CrossRefPubMedGoogle Scholar
  3. 3.
    Barbat-Artigas S, Pion CH, Leduc-Gaudet JP, Rolland Y, Aubertin-Leheudre M (2014) Exploring the role of muscle mass, obesity, and age in the relationship between muscle quality and physical function. J Am Med Dir Assoc 15:303–320CrossRefPubMedGoogle Scholar
  4. 4.
    Becher C, Kley K, Lobenhoffer P, Ezechieli M, Smith T, Ostermeier S (2014) Dynamic versus static reconstruction of the medial patellofemoral ligament for recurrent lateral patellar dislocation. Knee Surg Sports Traumatol Arthrosc 22:2452–2457CrossRefPubMedGoogle Scholar
  5. 5.
    Beighton P, Solomon L, Soskolne CL (1973) Articular mobility in an African population. Ann Rheum Dis 32:413–418CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Burks RT, Desio SM, Bachus KN, Tyson L, Springer K (1998) Biomechanical evaluation of lateral patellar dislocations. Am J Knee Surg 11:24–31PubMedGoogle Scholar
  7. 7.
    Caplan N, Lees D, Newby M, Ewen A, Jackson R, St Clair GA, Kader D (2014) Is tibial tuberosity-trochlear groove distance an appropriate measure for the identification of knees with patellar instability? Knee Surg Sports Traumatol Arthrosc 22:2377–2381CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Hillsdale, New JerseyGoogle Scholar
  9. 9.
    Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26CrossRefPubMedGoogle Scholar
  10. 10.
    Ellera Gomes JL (1992) Medial patellofemoral ligament reconstruction for recurrent dislocation of the patella: a preliminary report. Arthroscopy 8:335–340CrossRefPubMedGoogle Scholar
  11. 11.
    Enderlein D, Nielsen T, Christiansen SE, Fauno P, Lind M (2014) Clinical outcome after reconstruction of the medial patellofemoral ligament in patients with recurrent patella instability. Knee Surg Sports Traumatol Arthrosc 22:2458–2464CrossRefPubMedGoogle Scholar
  12. 12.
    Fithian DC, Paxton EW, Stone ML, Silva P, Davis DK, Elias DA, White LM (2004) Epidemiology and natural history of acute patellar dislocation. Am J Sports Med 32:1114–1121CrossRefPubMedGoogle Scholar
  13. 13.
    Fouilleron N, Marchetti E, Autissier G, Gougeon F, Migaud H, Girard J (2010) Proximal tibial derotation osteotomy for torsional tibial deformities generating patello-femoral disorders. Orthop Traumatol Surg Res 96:785–792CrossRefPubMedGoogle Scholar
  14. 14.
    Fujino K, Tajima G, Yan J, Kamei Y, Maruyama M, Takeda S, Kikuchi S, Shimamura T (2015) Morphology of the femoral insertion site of the medial patellofemoral ligament. Knee Surg Sports Traumatol Arthrosc 23:998–1003CrossRefPubMedGoogle Scholar
  15. 15.
    Galland O, Walch G, Dejour H, Carret JP (1990) An anatomical and radiological study of the femoropatellar articulation. Surg Radiol Anat 12:119–125CrossRefPubMedGoogle Scholar
  16. 16.
    Goutallier D, Bernageau J, Lecudonnec B (1978) The measurement of the tibial tuberosity. Patella groove distanced technique and results. Rev Chir Orthop Reparatrice Appar Mot 64:423–428PubMedGoogle Scholar
  17. 17.
    Hall MG, Ferrell WR, Sturrock RD, Hamblen DL, Baxendale RH (1995) The effect of the hypermobility syndrome on knee joint proprioception. Br J Rheumatol 34:121–125CrossRefPubMedGoogle Scholar
  18. 18.
    Hinterwimmer S, Rosenstiel N, Lenich A, Waldt S, Imhoff AB (2012) Femoral osteotomy for patellofemoral instability. Unfallchirurg 115:410–416CrossRefPubMedGoogle Scholar
  19. 19.
    Hopper GP, Leach WJ, Rooney BP, Walker CR, Blyth MJ (2014) Does degree of trochlear dysplasia and position of femoral tunnel influence outcome after medial patellofemoral ligament reconstruction? Am J Sports Med 42:716–722CrossRefPubMedGoogle Scholar
  20. 20.
    Howells NR, Barnett AJ, Ahearn N, Ansari A, Eldridge JD (2012) Medial patellofemoral ligament reconstruction: a prospective outcome assessment of a large single centre series. J Bone Joint Surg Br 94:1202–1208CrossRefPubMedGoogle Scholar
  21. 21.
    Howells NR, Eldridge JD (2012) Medial patellofemoral ligament reconstruction for patellar instability in patients with hypermobility: a case control study. J Bone Joint Surg Br 94:1655–1659CrossRefPubMedGoogle Scholar
  22. 22.
    Indrayan A (2008) Medical biostatistics. Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, London, NewYorkGoogle Scholar
  23. 23.
    Katz MH (2006) Multivariable analysis. A practical guide for clinicians, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. 24.
    Kujala UM, Jaakkola LH, Koskinen SK, Taimela S, Hurme M, Nelimarkka O (1993) Scoring of patellofemoral disorders. Arthroscopy 9:159–163CrossRefPubMedGoogle Scholar
  25. 25.
    Lorbach O, Haupert A, Efe T, Pizanis A, Weyers I, Kohn D, Kieb M (2016) Biomechanical evaluation of MPFL reconstructions: differences in dynamic contact pressure between gracilis and fascia lata graft. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-016-4005-5
  26. 26.
    McCarthy M, Ridley TJ, Bollier M, Wolf B, Albright J, Amendola A (2013) Femoral tunnel placement in medial patellofemoral ligament reconstruction. Iowa Orthop J 33:58–63PubMedPubMedCentralGoogle Scholar
  27. 27.
    Nelitz M, Dreyhaupt J, Reichel H, Woelfle J, Lippacher S (2013) Anatomic reconstruction of the medial patellofemoral ligament in children and adolescents with open growth plates: surgical technique and clinical outcome. Am J Sports Med 41:58–63CrossRefPubMedGoogle Scholar
  28. 28.
    Neyret P, Robinson AH, Le CB, Lapra C, Chambat P (2002) Patellar tendon length—the factor in patellar instability? Knee 9:3–6CrossRefPubMedGoogle Scholar
  29. 29.
    Paxton EW, Fithian DC, Stone ML, Silva P (2003) The reliability and validity of knee-specific and general health instruments in assessing acute patellar dislocation outcomes. Am J Sports Med 31:487–492CrossRefPubMedGoogle Scholar
  30. 30.
    Peacock J, Kerry S (2007) Presenting medical statistics from proposal to publication. A step-by-step guide, 1st edn. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Pennock AT, Alam M, Bastrom T (2014) Variation in tibial tubercle-trochlear groove measurement as a function of age, sex, size, and patellar instability. Am J Sports Med 42:389–393CrossRefPubMedGoogle Scholar
  32. 32.
    Placella G, Tei MM, Sebastiani E, Criscenti G, Speziali A, Mazzola C, Georgoulis A, Cerulli G (2014) Shape and size of the medial patellofemoral ligament for the best surgical reconstruction: a human cadaveric study. Knee Surg Sports Traumatol Arthrosc 22:2327–2333CrossRefPubMedGoogle Scholar
  33. 33.
    Quirbach S, Smekal V, Rosenberger RE, El AR, Schottle PB (2012) Anatomical double-bundle reconstruction of the medial patellofemoral ligament with a gracilis autograft. Oper Orthop Traumatol 24:131–139CrossRefPubMedGoogle Scholar
  34. 34.
    Redfern J, Kamath G, Burks R (2010) Anatomical confirmation of the use of radiographic landmarks in medial patellofemoral ligament reconstruction. Am J Sports Med 38:293–297CrossRefPubMedGoogle Scholar
  35. 35.
    Schottle PB, Fucentese SF, Romero J (2005) Clinical and radiological outcome of medial patellofemoral ligament reconstruction with a semitendinosus autograft for patella instability. Knee Surg Sports Traumatol Arthrosc 13:516–521CrossRefPubMedGoogle Scholar
  36. 36.
    Schöttle PB, Romero J, Schmeling A, Weiler A (2008) Technical note: anatomical reconstruction of the medial patellofemoral ligament using a free gracilis autograft. Arch Orthop Trauma Surg 128:479–484CrossRefPubMedGoogle Scholar
  37. 37.
    Schöttle PB, Schmeling A, Rosenstiel N, Weiler A (2007) Radiographic landmarks for femoral tunnel placement in medial patellofemoral ligament reconstruction. Am J Sports Med 35:801–804CrossRefPubMedGoogle Scholar
  38. 38.
    Smith TO, Donell ST, Clark A, Chester R, Cross J, Kader DF, Arendt EA (2014) The development, validation and internal consistency of the Norwich Patellar Instability (NPI) score. Knee Surg Sports Traumatol Arthrosc 22:324–335CrossRefPubMedGoogle Scholar
  39. 39.
    Stephen JM, Kader D, Lumpaopong P, Deehan DJ, Amis AA (2013) Sectioning the medial patellofemoral ligament alters patellofemoral joint kinematics and contact mechanics. J Orthop Res 31:1423–1429CrossRefPubMedGoogle Scholar
  40. 40.
    Stephen JM, Kader D, Lumpaopong P, Deehan DJ, Amis AA (2014) The effect of femoral tunnel position and graft tension on patellar contact mechanics and kinematics after medial patellofemoral ligament reconstruction. Am J Sports Med 42:364–372CrossRefPubMedGoogle Scholar
  41. 41.
    Stephen JM, Lumpaopong P, Deehan DJ, Kader D, Amis AA (2012) The medial patellofemoral ligament: location of femoral attachment and length change patterns resulting from anatomic and nonanatomic attachments. Am J Sports Med 40:1871–1879CrossRefPubMedGoogle Scholar
  42. 42.
    Stephen JM, Lumpaopong P, Dodds AL, Williams A, Amis AA (2015) The effect of tibial tuberosity medialization and lateralization on patellofemoral joint kinematics, contact mechanics, and stability. Am J Sports Med 43:186–194CrossRefPubMedGoogle Scholar
  43. 43.
    Stupay KL, Swart E, Shubin Stein BE (2015) Widespread implementation of medial patellofemoral ligament reconstruction for recurrent patellar instability maintains functional outcomes at midterm to long-term follow-up while decreasing complication rates: a systematic review. Arthroscopy 31:1372–1380CrossRefPubMedGoogle Scholar
  44. 44.
    Torabi M, Wo S, Vyas D, Costello J (2015) MRI evaluation and complications of medial patellofemoral ligament reconstruction. Clin Imaging 39:116–127CrossRefPubMedGoogle Scholar
  45. 45.
    Van Haver A, De Roo K, De Beule M, Labey L, De Baets P, Dejour D, Claessens T, Verdonk P (2015) The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med 43:1354–1361CrossRefPubMedGoogle Scholar
  46. 46.
    Wagner D, Pfalzer F, Hingelbaum S, Huth J, Mauch F, Bauer G (2013) The influence of risk factors on clinical outcomes following anatomical medial patellofemoral ligament (MPFL) reconstruction using the gracilis tendon. Knee Surg Sports Traumatol Arthrosc 21:318–324CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2016

Authors and Affiliations

  • Kars P. Valkering
    • 1
  • Aysha Rajeev
    • 1
  • Nick Caplan
    • 2
  • Wim E. Tuinebreijer
    • 3
  • Deiary F. Kader
    • 1
    • 2
    • 4
  1. 1.Department of Trauma and OrthopaedicsQueen Elizabeth HospitalGatesheadUK
  2. 2.Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
  3. 3.Department of General SurgeryRed Cross HospitalBeverwijkThe Netherlands
  4. 4.Nuffield HospitalNewcastle upon TyneUK

Personalised recommendations