Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 10, pp 2993–3003 | Cite as

Global rotation has high sensitivity in ACL lesions within stress MRI

  • João Espregueira-Mendes
  • Renato Andrade
  • Ana Leal
  • Hélder Pereira
  • Abdala Skaf
  • Sérgio Rodrigues-Gomes
  • J. Miguel Oliveira
  • Rui L. Reis
  • Rogério Pereira
Knee

Abstract

Purpose

This study aims to objectively compare side-to-side differences of P-A laxity alone and coupled with rotatory laxity within magnetic resonance imaging, in patients with total anterior cruciate ligament (ACL) rupture.

Methods

This prospective study enrolled sixty-one patients with signs and symptoms of unilateral total anterior cruciate ligament rupture, which were referred to magnetic resonance evaluation with simultaneous instrumented laxity measurements. Sixteen of those patients were randomly selected to also have the contralateral healthy knee laxity profile tested. Images were acquired for the medial and lateral tibial plateaus without pressure, with postero-anterior translation, and postero-anterior translation coupled with maximum internal and external rotation, respectively.

Results

All parameters measured were significantly different between healthy and injured knees (P < 0.05), with exception of lateral plateau without stress. The difference between injured and healthy knees for medial and lateral tibial plateaus anterior displacement (P < 0.05) and rotation (P < 0.001) was statistically significant. It was found a significant correlation between the global rotation of the lateral tibial plateau (lateral plateau with internal + external rotation) with pivot-shift, and between the anterior global translation of both tibial plateaus (medial + lateral tibial plateau) with Lachman. The anterior global translation of both tibial plateaus was the most specific test with a cut-off point of 11.1 mm (93.8 %), and the global rotation of the lateral tibial plateau was the most sensitive test with a correspondent cut-off point of 15.1 mm (92.9 %).

Conclusion

Objective laxity quantification of ACL-injured knees showed increased sagittal laxity, and simultaneously in sagittal and transversal planes, when compared to their healthy contralateral knee. Moreover, when measuring instability from anterior cruciate ligament ruptures, the anterior global translation of both tibial plateaus and global rotation of the lateral tibial plateau add diagnostic specificity and sensitivity. This work strengthens the evidence that the anterior cruciate ligament plays an important biomechanical role in controlling the anterior translation, but also both internal and external rotation. The high sensitivity and specificity of this device in objectively identifying and measuring the multiplanar instability clearly guides stability restoration clinical procedures.

Level of evidence Cross-sectional study, Level III.

Keywords

ACL Magnetic resonance imaging Knee Instability Rotatory laxity Sagittal laxity 

References

  1. 1.
    Ahlden M, Sernert N, Karlsson J, Kartus J (2013) A prospective randomized study comparing double- and single-bundle techniques for anterior cruciate ligament reconstruction. Am J Sports Med 41:2484–2491CrossRefPubMedGoogle Scholar
  2. 2.
    Amano K, Li Q, Ma CB (2016) Functional knee assessment with advanced imaging. Curr Rev Musculoskelet Med 9:123–129CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Barcellona MG, Morrissey MC, Milligan P, Amis AA (2014) The effect of thigh muscle activity on anterior knee laxity in the uninjured and anterior cruciate ligament-injured knee. Knee Surg Sports Traumatol Arthrosc 22:2821–2829CrossRefPubMedGoogle Scholar
  4. 4.
    Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg H, Arendt EA, Lavoie F, Neyret P, Jacobs CA (2010) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc 18:1379–1384CrossRefPubMedGoogle Scholar
  5. 5.
    Branch TP, Mayr HO, Browne JE, Campbell JC, Stoehr A, Jacobs CA (2010) Instrumented examination of anterior cruciate ligament injuries: minimizing flaws of the manual clinical examination. Arthroscopy 26:997–1004CrossRefPubMedGoogle Scholar
  6. 6.
    Claes S, Hermie L, Verdonk R, Bellemans J, Verdonk P (2013) Is osteoarthritis an inevitable consequence of anterior cruciate ligament reconstruction? A meta-analysis. Knee Surg Sports Traumatol Arthrosc 21:1967–1976CrossRefPubMedGoogle Scholar
  7. 7.
    Colombet P, Jenny J, Menetrey J, Plaweski S, Zaffagnini S (2012) Current concept in rotational laxity control and evaluation in ACL reconstruction. Orthop Traumatol Surg Res 98:S201–S210CrossRefPubMedGoogle Scholar
  8. 8.
    Dejour D, Ntagiopoulos PG, Saggin PR, Panisset J-C (2013) The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy 29:491–499CrossRefPubMedGoogle Scholar
  9. 9.
    Espregueira-Mendes J, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A, Oliveira JM, Reis RL (2012) Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20:671–678CrossRefPubMedGoogle Scholar
  10. 10.
    Hart HF, Culvenor AG, Collins NJ, Ackland DC, Cowan SM, Machotka Z, Crossley KM (2016) Knee kinematics and joint moments during gait following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Br J Sports Med 50:597–612CrossRefPubMedGoogle Scholar
  11. 11.
    Haughom BD, Souza R, Schairer WW, Li X, Ma CB (2012) Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20:663–670CrossRefPubMedGoogle Scholar
  12. 12.
    Hofbauer M, Thorhauer ED, Abebe E, Bey M, Tashman S (2014) Altered tibiofemoral kinematics in the affected knee and compensatory changes in the contralateral knee after anterior cruciate ligament reconstruction. Am J Sports Med 42:2715–2721CrossRefPubMedGoogle Scholar
  13. 13.
    Hughston J, Andrews J, Cross M, Moschi A (1976) Classification of knee ligament instabilities. Part I. The medial compartment and cruciate ligaments. J Bone Joint Surg Am 58:159–172CrossRefPubMedGoogle Scholar
  14. 14.
    Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600–613CrossRefPubMedGoogle Scholar
  15. 15.
    Irrgang JJ, Bost JE, Fu FH (2009) Re: outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med 37:421–422CrossRefPubMedGoogle Scholar
  16. 16.
    Katz JW, Fingeroth RJ (1986) The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med 14:88–91CrossRefPubMedGoogle Scholar
  17. 17.
    Kiapour AM, Wordeman SC, Paterno MV, Quatman CE, Levine JW, Goel VK, Demetropoulos CK, Hewett TE (2014) Diagnostic value of knee arthrometry in the prediction of anterior cruciate ligament strain during landing. Am J Sports Med 42:2715–2721CrossRefGoogle Scholar
  18. 18.
    Kim SJ, Lee SK, Kim SH, Kim SH, Kim JS, Jung M (2014) Does anterior laxity of the uninjured knee influence clinical outcomes of ACL reconstruction? J Bone Joint Surg Am 96:543–548CrossRefPubMedGoogle Scholar
  19. 19.
    Lane CG, Warren R, Pearle AD (2008) The pivot shift. J Am Acad Orthop Surg 16:679–688CrossRefPubMedGoogle Scholar
  20. 20.
    Leblanc M-C, Kowalczuk M, Andruszkiewicz N, Simunovic N, Farrokhyar F, Turnbull TL, Debski RE, Ayeni OR (2015) Diagnostic accuracy of physical examination for anterior knee instability: a systematic review. Knee Surg Sports Traumatol Arthrosc 23:2805–2813CrossRefPubMedGoogle Scholar
  21. 21.
    Leiter JR, Gourlay R, McRae S, de Korompay N, MacDonald PB (2014) Long-term follow-up of ACL reconstruction with hamstring autograft. Knee Surg Sports Traumatol Arthrosc 22:1061–1069CrossRefPubMedGoogle Scholar
  22. 22.
    Lopomo N, Signorelli C, Rahnemai-Azar AA, Raggi F, Hoshino Y, Samuelsson K, Musahl V, Karlsson J, Kuroda R, Zaffagnini S (2016) Analysis of the influence of anaesthesia on the clinical and quantitative assessment of the pivot shift: a multicenter international study. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-016-4130-1 Google Scholar
  23. 23.
    Lopomo N, Zaffagnini S, Amis AA (2013) Quantifying the pivot shift test: a systematic review. Knee Surg Sports Traumatol Arthrosc 21:767–783CrossRefPubMedGoogle Scholar
  24. 24.
    Lorbach O, Brockmeyer M, Kieb M, Zerbe T, Pape D, Seil R (2012) Objective measurement devices to assess static rotational knee laxity: focus on the Rotameter. Knee Surg Sports Traumatol Arthrosc 20:639–644CrossRefPubMedGoogle Scholar
  25. 25.
    Michalitsis S, Hantes M, Thriskos P, Tsezou A, Malizos K, Fezoulidis I, Vlychou M (2016) Articular cartilage status 2 years after arthroscopic ACL reconstruction in patients with or without concomitant meniscal surgery: evaluation with 3.0 T MR imaging. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-016-4153-7 PubMedGoogle Scholar
  26. 26.
    Mouton C, Theisen D, Meyer T, Agostinis H, Nührenbörger C, Pape D, Seil R (2015) Noninjured knees of patients with noncontact ACL injuries display higher average anterior and internal rotational knee laxity compared with healthy knees of a noninjured population. Am J Sports Med 43:1918–1923CrossRefPubMedGoogle Scholar
  27. 27.
    Mouton C, Theisen D, Pape D, Nührenbörger C, Seil R (2012) Static rotational knee laxity in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 20:652–662CrossRefPubMedGoogle Scholar
  28. 28.
    Mouton C, Theisen D, Seil R (2016) Objective measurements of static anterior and rotational knee laxity. Curr Rev Musculoskelet Med 9:139–147CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Musahl V, Bell KM, Tsai AG, Costic RS, Allaire R, Zantop T, Irrgang JJ, Fu FH (2007) Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc 15:1009–1012CrossRefPubMedGoogle Scholar
  30. 30.
    Musahl V, Griffith C, Irrgang JJ, Hoshino Y, Kuroda R, Lopomo N, Zaffagnini S, Samuelsson K, Karlsson J, Oostdyk A (2016) Validation of quantitative measures of rotatory knee laxity. Am J Sports Med. doi:10.1177/0363546516650667 Google Scholar
  31. 31.
    Musahl V, Ranawat A (2016) ACL update: objective measures on knee instability: an introduction. Curr Rev Musculoskelet Med 9:113CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Musahl V, Seil R, Zaffagnini S, Tashman S, Karlsson J (2012) The role of static and dynamic rotatory laxity testing in evaluating ACL injury. Knee Surg Sports Traumatol Arthrosc 20:603–612CrossRefPubMedGoogle Scholar
  33. 33.
    Nakamura K, Koga H, Sekiya I, Watanabe T, Mochizuki T, Horie M, Nakamura T, Otabe K, Muneta T (2015) Evaluation of pivot shift phenomenon while awake and under anaesthesia by different manoeuvres using triaxial accelerometer. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3740-3 Google Scholar
  34. 34.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon The knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155CrossRefPubMedGoogle Scholar
  35. 35.
    Noyes FR, Jetter AW, Grood ES, Harms SP, Gardner EJ, Levy MS (2014) Anterior Cruciate Ligament Function in Providing Rotational Stability Assessed by Medial and Lateral Tibiofemoral Compartment Translations and Subluxations. Am J Sports Med 43:683–692CrossRefPubMedGoogle Scholar
  36. 36.
    Ochi M, Adachi N, Uchio Y, Deie M, Kumahashi N, Ishikawa M, Sera S (2009) A minimum 2-year follow-up after selective anteromedial or posterolateral bundle anterior cruciate ligament reconstruction. Arthroscopy 25:117–122CrossRefPubMedGoogle Scholar
  37. 37.
    Pollet V, Barrat D, Meirhaeghe E, Vaes P, Handelberg F (2005) The role of the Rolimeter in quantifying knee instability compared to the functional outcome of ACL-reconstructed versus conservatively-treated knees. Knee Surg Sports Traumatol Arthrosc 13:12–18CrossRefPubMedGoogle Scholar
  38. 38.
    Prins M (2006) The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother 52:66CrossRefPubMedGoogle Scholar
  39. 39.
    Pugh L, Mascarenhas R, Arneja S, Chin PY, Leith JM (2009) Current concepts in instrumented knee-laxity testing. Am J Sports Med 37:199–210CrossRefPubMedGoogle Scholar
  40. 40.
    Rohman EM, Macalena JA (2016) Anterior cruciate ligament assessment using arthrometry and stress imaging. Curr Rev Musculoskelet Med 9:130–138CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Siebold R, Fu FH (2008) Assessment and augmentation of symptomatic anteromedial or posterolateral bundle tears of the anterior cruciate ligament. Arthroscopy 24:1289–1298CrossRefPubMedGoogle Scholar
  42. 42.
    Tagesson S, Öberg B, Kvist J (2015) Static and dynamic tibial translation before, 5 weeks after, and 5 years after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23:3691–3697CrossRefPubMedGoogle Scholar
  43. 43.
    Tardy N, Marchand P, Kouyoumdjian P, Blin D, Demattei C, Asencio G (2014) A preliminary in vivo assessment of anterior cruciate ligament-deficient knee kinematics with the KneeM device: a new method to assess rotatory laxity using open MRI. Orthop J Sports Med. doi:10.1177/2325967114525583 PubMedPubMedCentralGoogle Scholar
  44. 44.
    Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37:909–916CrossRefPubMedGoogle Scholar
  45. 45.
    Uhorchak JM, Scoville CR, Williams GN, Arciero RA, Pierre PS, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament a prospective four-year evaluation of 859 west point cadets. Am J Sports Med 31:831–842CrossRefPubMedGoogle Scholar
  46. 46.
    Vauhnik R, Morrissey MC, Rutherford OM, Turk Z, Pilih IA, Pohar M (2008) Knee anterior laxity: a risk factor for traumatic knee injury among sportswomen? Knee Surg Sports Traumatol Arthrosc 16:823–833CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2016

Authors and Affiliations

  • João Espregueira-Mendes
    • 1
    • 2
    • 3
    • 4
    • 5
  • Renato Andrade
    • 2
    • 3
    • 6
  • Ana Leal
    • 2
    • 3
    • 7
  • Hélder Pereira
    • 2
    • 3
    • 8
  • Abdala Skaf
    • 9
    • 10
  • Sérgio Rodrigues-Gomes
    • 2
    • 3
    • 11
  • J. Miguel Oliveira
    • 2
    • 4
    • 5
  • Rui L. Reis
    • 4
    • 5
  • Rogério Pereira
    • 2
    • 3
    • 12
  1. 1.Orthopaedics Department of Minho UniversityBragaPortugal
  2. 2.Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of ExcellencePortoPortugal
  3. 3.Dom Henrique Research CentrePortoPortugal
  4. 4.3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoBarco, GuimarãesPortugal
  5. 5.ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal
  6. 6.Faculty of SportsUniversity of PortoPortoPortugal
  7. 7.CMEMS Center for MicroElectroMechanical Systems, Mechanical Engineering DepartmentUniversity of MinhoGuimarãesPortugal
  8. 8.Orthopaedic DepartmentCentro Hospitalar Póvoa de VarzimVila do CondePortugal
  9. 9.Hospital do CoraçãoSão PauloBrazil
  10. 10.Musculoskeletal DepartmentClínica Alta Excelência DiagnósticaSão PauloBrazil
  11. 11.SMIC GroupPortoPortugal
  12. 12.Faculty of Health SciencesUniversity of Fernando PessoaPortoPortugal

Personalised recommendations