Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 10, pp 3155–3162 | Cite as

Anatomic single-bundle anterior cruciate ligament reconstruction improves walking economy: hamstrings tendon versus patellar tendon grafts

  • Efthymios Iliopoulos
  • Nikiforos Galanis
  • Andreas Zafeiridis
  • Michael Iosifidis
  • Pericles Papadopoulos
  • Michael Potoupnis
  • Nikolaos Geladas
  • Ioannis S. Vrabas
  • John Kirkos



Anterior cruciate ligament (ACL) injury is associated with a pathologic gait pattern and increased energy cost during locomotion. ACL reconstruction could improve the gait pattern. Hamstrings tendon (HAM) and bone–patellar tendon–bone (BPTB) grafts are usually used for reconstruction. The aim of this study was to compare the efficacy of anatomic ACL reconstruction with HAM and BPTB grafts on improving and normalizing the energy cost and physiologic reserves during flat, uphill, and downhill walking.


Twenty male subjects with unilateral ACL injuries were randomly assigned to ACL reconstruction with a HAM (n = 10) or BPTB (n = 10) graft. Ten matched controls were also enrolled. All participants performed three 8-min walking tasks at 0, +10, and −10 % gradients before and 9 months after surgery. Energy cost (oxygen consumption, VO2), heart rate (HR), and ventilation (VE) were measured. Lysholm/IKDC scores were recorded.


Pre-operatively, VO2, HR, and VE were higher in the HAM and BPTB groups than in controls during walking at 0, +10, and −10 % gradients (p < 0.001–0.01). Post-operatively, both HAM and BPTB groups showed reduced VO2, HR, and VE during the three walking tasks (p < 0.001–0.01). Although the post-operative VO2 in both surgical groups reached 90–95 % of the normative (control) value during walking, it remained elevated against the value observed in controls (p < 0.001–0.01). The HAM and BPTB groups showed no differences in post-surgical VO2 or HR during walking at all three gradients.


Anatomic ACL reconstruction with either HAM or BPTB graft resulted in similar short-term improvements in energy cost and nearly normalized locomotion economy and cardiorespiratory reserves during flat, uphill, and downhill walking. The improved locomotion economy is an additional benefit of anatomic ACL reconstruction, irrespective of the type of graft used, that the orthopaedic surgeons should consider.

Level of evidence



ACL ACL reconstruction Oxygen consumption Energy expenditure Energy cost Graft choice 


  1. 1.
    Baar K (2009) The signaling underlying FITness. Appl Physiol Nutr Metab 34:411–419CrossRefPubMedGoogle Scholar
  2. 2.
    Barnes KR, Kilding AE (2015) Running economy: measurement, norms, and determining factors. Sport Med Open 1(1):1–15CrossRefGoogle Scholar
  3. 3.
    Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72:871–877CrossRefPubMedGoogle Scholar
  4. 4.
    Colak M, Ayan I, Dal U, Yaroglu T, Dag F, Yilmaz C, Beydagi H (2011) Anterior cruciate ligament reconstruction improves the metabolic energy cost of level walking at customary speeds. Knee Surg Sport Traumatol Arthrosc 19:1271–1276CrossRefGoogle Scholar
  5. 5.
    Corcoran PJ, Brengelmann GL (1970) Oxygen uptake in normal and handicapped subjects, in relation to speed of walking beside velocity-controlled cart. Arch Phys Med Rehabil 51:78–87PubMedGoogle Scholar
  6. 6.
    Czamara A, Markowska I, Królikowska A, Szopa A, Domagalska Szopa M (2015) Kinematics of rotation in joints of the lower limbs and pelvis during gait: early results—SB ACLR approach versus DB ACLR approach. Biomed Res Int 2015:707168CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Darter BJ, Rodriguez KM, Wilken JM (2013) Test-retest reliability and minimum detectable change using the K4b 2: oxygen consumption, gait efficiency, and heart rate for healthy adults during submaximal walking. Res Q Exerc Sport 84:223–231CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Duffield R, Dawson B, Pinnington HC, Wong P (2004) Accuracy and reliability of a Cosmed K4b2 portable gas analysis system. J Sci Med Sport 7:11–22CrossRefPubMedGoogle Scholar
  9. 9.
    Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Ménétrey J (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14:204–213CrossRefPubMedGoogle Scholar
  10. 10.
    Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162–184CrossRefPubMedGoogle Scholar
  11. 11.
    Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586(1):11–23CrossRefPubMedGoogle Scholar
  12. 12.
    Ferber R, Osternig LR, Woollacott MH, Wasielewski NJ, Lee JH (2002) Gait mechanics in chronic ACL deficiency and subsequent repair. Clin Biomech 17:274–285CrossRefGoogle Scholar
  13. 13.
    Gadikota HR, Hosseini A, Asnis P, Li G (2015) Kinematic analysis of five different anterior cruciate ligament reconstruction techniques. Knee Surg Relat Res 27:69–75CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gao B, Zheng N (2015) Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clin Biomech 25:222–229CrossRefGoogle Scholar
  15. 15.
    Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N (2007) Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res 454:89–94CrossRefPubMedGoogle Scholar
  16. 16.
    Hasegawa T, Otani T, Takeda K, Matsumoto H, Harato K, Toyama Y, Nagura T (2015) Anterior cruciate ligament reconstruction does not fully restore normal 3D knee kinematics at 12 months during walking and walk-pivoting-a longitudinal gait analysis study. J Appl Biomech 31(5):330–339CrossRefPubMedGoogle Scholar
  17. 17.
    Hefti F, Müller W (1993) Current state of evaluation of knee ligament lesions. The new IKDC knee evaluation form. Orthopade 22:351–362PubMedGoogle Scholar
  18. 18.
    Hooper DM, Morrissey MC, Drechsler WI, Clark NC, Coutts FJ, McAuliffe TB (2002) Gait analysis 6 and 12 months after anterior cruciate ligament reconstruction surgery. Clin Orthop Relat Res 403:168–178CrossRefGoogle Scholar
  19. 19.
    Hughes G, Watkins J (2006) A risk-factor model for anterior cruciate ligament injury. Sports Med 36:411–428CrossRefPubMedGoogle Scholar
  20. 20.
    Hurd WJ, Snyder-Mackler L (2007) Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J Orthop Res 25:1369–1377CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ichinohe S, Yoshida M, Murakami H, Takayama H, Izumiyama S, Shimamura T (2000) Meniscal tearing after ACL reconstruction. J Orthop Surg (Hong Kong) 8:53–59CrossRefGoogle Scholar
  22. 22.
    Iliopoulos E, Galanis N, Iosifidis M, Zafeiridis A, Papadopoulos P, Potoupnis M, Geladas N, Vrabas IS, Kirkos J (2015) Anterior cruciate ligament deficiency reduces walking economy in “copers” and “non-copers.” Knee Surg Sport Traumatol Arthrosc. doi:10.1007/s00167-015-3709-2
  23. 23.
    Kang J, Chaloupka EC, Mastrangelo MA, Hoffman JR (2002) Physiological and biomechanical analysis of treadmill walking up various gradients in men and women. Eur J Appl Physiol 86:503–508CrossRefPubMedGoogle Scholar
  24. 24.
    Kim HS, Seon JK, Jo AR (2013) Current Trends in Anterior Cruciate Ligament Reconstruction. Knee Surg Relat Res 25:165–173CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Knoll Z, Kiss RM, Kocsis L (2004) Gait adaptation in ACL deficient patients before and after anterior cruciate ligament reconstruction surgery. J Electromyogr Kinesiol 14:287–294CrossRefPubMedGoogle Scholar
  26. 26.
    Li S, Chen Y, Lin Z, Cui W, Zhao J, Su W (2012) A systematic review of randomized controlled clinical trials comparing hamstring autografts versus bone–patellar tendon–bone autografts for the reconstruction of the anterior cruciate ligament. Arch Orthop Trauma Surg 132:1287–1297CrossRefPubMedGoogle Scholar
  27. 27.
    Limbird TJ, Shiavi R, Frazer M, Borra H (1988) EMG profiles of knee joint musculature during walking: changes induced by anterior cruciate ligament deficiency. J Orthop Res 6:630–638CrossRefPubMedGoogle Scholar
  28. 28.
    Malatesta D, Simar D, Dauvilliers Y, Candau R, Borrani F, Prefaut C, Caillaud C (2003) Energy cost of walking and gait instability in healthy 65- and 80-yr-olds. J Appl Physiol 95(6):2248–2256CrossRefPubMedGoogle Scholar
  29. 29.
    Mattsson E, Broström LA, Linnarsson D (1990) Changes in walking ability after knee replacement. Int Orthop 14:277–280CrossRefPubMedGoogle Scholar
  30. 30.
    McHugh MP, Spitz AL, Lorei MP, Nicholas SJ, Hershman EB, Gleim GW (1994) Effect of anterior cruciate ligament deficiency on economy of walking and jogging. J Orthop Res 12:592–597CrossRefPubMedGoogle Scholar
  31. 31.
    McLaughlin JE, King GA, Howley ET, Bassett DR, Ainsworth BE (2001) Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med 22:280–284CrossRefPubMedGoogle Scholar
  32. 32.
    Middleton KK, Hamilton T, Irrgang JJ, Karlsson J, Harner CD, Fu FH (2014) Anatomic anterior cruciate ligament (ACL) reconstruction: a global perspective. Part 1. Knee Surg Sport Traumatol Arthrosc 22:1467–1482CrossRefGoogle Scholar
  33. 33.
    Razi M, Sarzaeem MM, Kazemian GH, Najafi F, Najafi MA (2014) Reconstruction of the anterior cruciate ligament: a comparison between bone-patellar tendon-bone grafts and fourstrand hamstring grafts. Med J Islam Repub Iran 28:134PubMedPubMedCentralGoogle Scholar
  34. 34.
    Romanini E, D’Angelo F, De Masi S, Adriani E, Magaletti M, Lacorte E, Laricchiuta P, Sagliocca L, Morciano C, Mele A (2010) Graft selection in arthroscopic anterior cruciate ligament reconstruction. J Orthop Traumatol 11:211–219CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Samuelsson K, Andersson D, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials. Arthroscopy 25:1139–1174CrossRefPubMedGoogle Scholar
  36. 36.
    Schrack JA, Simonsick EM, Ferrucci L (2010) Comparison of the cosmed K4b2 portable metabolic system in measuring steady-state walking energy expenditure. PLoS ONE 5(2):e9292CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schurz M, Tiefenboeck TM, Winnisch M, Syre S, Plachel F, Steiner G, Hajdu S, Hofbauer M (2015) Clinical and functional outcome of all-inside anterior cruciate ligament reconstruction at a minimum of 2 years’ follow-up. Arthroscopy 32(2):332–337CrossRefPubMedGoogle Scholar
  38. 38.
    Shabani B, Bytyqi D, Lustig S, Cheze L, Bytyqi C, Neyret P (2014) Gait knee kinematics after ACL reconstruction: 3D assessment. Int Orthop 39(6):1187–1193CrossRefPubMedGoogle Scholar
  39. 39.
    Simon D, Mascarenhas R, Saltzman BM, Rollins M, Bach BR, MacDonald P (2015) The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Adv Orthop 2015:928301CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Solomon SJ, Kurzer MS, Calloway DH (1982) Menstrual cycle and basal metabolic rate in women. Am J Clin Nutr 36:611–616PubMedGoogle Scholar
  41. 41.
    Steckel H, Murtha PE, Costic RS, Moody JE, Jaramaz B, Fu FH (2007) Computer evaluation of kinematics of anterior cruciate ligament reconstructions. Clin Orthop Relat Res 463:37–42PubMedGoogle Scholar
  42. 42.
    Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:42–49Google Scholar
  43. 43.
    Tengman E, Grip H, Stensdotter AK, Häger CK (2015) Anterior cruciate ligament injury about 20 years post-treatment: a kinematic analysis of one-leg hop. Scand J Med Sci Sports 25(6):818–827CrossRefPubMedGoogle Scholar
  44. 44.
    Timoney JM, Inman WS, Quesada PM, Sharkey PF, Barrack RL, Skinner HB, Alexander AH (1993) Return of normal gait patterns after anterior cruciate ligament reconstruction. Am J Sport Med 21:887–889CrossRefGoogle Scholar
  45. 45.
    Waters RL, Lunsford BR, Perry J, Byrd R (1988) Energy-speed relationship of walking: standard tables. J Orthop Res 6:215–222CrossRefPubMedGoogle Scholar
  46. 46.
    Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9:207–231CrossRefPubMedGoogle Scholar
  47. 47.
    Webster KE, Wittwer JE, O’Brien J, Feller JA (2005) Gait patterns after anterior cruciate ligament reconstruction are related to graft type. Am J Sports Med 33:247–254CrossRefPubMedGoogle Scholar
  48. 48.
    Wong JM-L, Khan T, Jayadev CS, Khan W, Johnstone D (2012) Anterior cruciate ligament rupture and osteoarthritis progression. Open Orthop J 6:295–300CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2016

Authors and Affiliations

  • Efthymios Iliopoulos
    • 1
  • Nikiforos Galanis
    • 1
  • Andreas Zafeiridis
    • 2
  • Michael Iosifidis
    • 3
  • Pericles Papadopoulos
    • 4
  • Michael Potoupnis
    • 1
  • Nikolaos Geladas
    • 5
  • Ioannis S. Vrabas
    • 2
  • John Kirkos
    • 1
  1. 1.Division of Sports Medicine, Department of Orthopaedics, Papageorgiou General Hospital, Medical SchoolAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of Physical Education and Sports Science at SerresAristotle University of ThessalonikiSerresGreece
  3. 3.Sports Medicine Unit, 2nd Orthopaedic DepartmentPapageorgiou General HospitalThessalonikiGreece
  4. 4.1st Department of Orthopaedics, Papanikolaou General Hospital, Medical SchoolAristotle University of ThessalonikiThessalonikiGreece
  5. 5.Department of Sport Medicine and Biology of Exercise, School of Physical Education and Sport ScienceUniversity of AthensAthensGreece

Personalised recommendations