Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 10, pp 3123–3133 | Cite as

Impact of the patella height on the strain pattern of the medial patellofemoral ligament after reconstruction: a computer model-based study

  • Thomas Tischer
  • Andreas Geier
  • Robert Lenz
  • Christoph Woernle
  • Rainer Bader
Knee

Abstract

Purpose

Medial patellofemoral ligament (MPFL) reconstruction is a key procedure for treating patellofemoral instability. However, controversy exists regarding the correct graft placement in different patellar heights. Therefore, our study aimed to investigate the influence of patellar height on MPFL insertion points.

Methods

Strain patterns of the reconstructed MPFL were calculated using a dynamic musculoskeletal multibody simulation. Numerous patellar (proximal, central, distal) and femoral attachment sites (around the radiological point according to Schöttle) were analysed in the presence of different patella heights [Insall–Salvati (IS) indices 0.74, 1.0, 1.5] during dynamic knee flexion from 0° to 120°.

Results

The reconstructed MPFL showed an almost isometric behaviour at the anatomic insertion (IS 1.0). Slight variation (<5 mm) around the ideal femoral insertion point resulted in only small changes in MPFL tension. However, a displacement of 10 mm led to a significant increase in MPFL tension, especially in the more anteriorly/proximally located femoral attachment points. Depending on the patella height, there exists an area of absolute isometry of the MPFL (length change <3 %) on the femoral condyle, which did not necessarily coincide exactly with the radiological point, but was located within a radius of 5 mm around it.

Conclusions

When reconstructed in the radiological femoral insertion point, MPFL strain patterns were only slightly affected by different patella heights (IS 0.74–1.5) suggesting that MPFL reconstruction could be safely performed using the radiological insertion. However, in case of a patella alta (IS 1.5), a slightly more proximal femoral insertion is beneficial for the biomechanical behaviour of the reconstructed MPFL.

Keywords

Medial patellofemoral ligament Biomechanics Patella kinematics Patella height Insertion point 

References

  1. 1.
    Ahmad CS, Brown GD, Stein BS (2009) The docking technique for medial patellofemoral ligament reconstruction: surgical technique and clinical outcome. Am J Sports Med 37(10):2021–2027CrossRefPubMedGoogle Scholar
  2. 2.
    Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP (2003) Anatomy and biomechanics of the medial patellofemoral ligament. Knee 10(3):215–220CrossRefPubMedGoogle Scholar
  3. 3.
    Amis AA, Senavongse W, Bull AM (2006) Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res 24(12):2201–2211CrossRefPubMedGoogle Scholar
  4. 4.
    Balcarek P, Ammon J, Frosch S, Walde TA, Schuttrumpf JP, Ferlemann KG, Lill H, Sturmer KM, Frosch KH (2010) Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy 26(7):926–935CrossRefPubMedGoogle Scholar
  5. 5.
    Balcarek P, Walde TA (2015) Accuracy of femoral tunnel placement in medial patellofemoral ligament reconstruction: the effect of a nearly true-lateral fluoroscopic view. Am J Sports Med 43(9):2228–2232CrossRefPubMedGoogle Scholar
  6. 6.
    Becher C, Kley K, Lobenhoffer P, Ezechieli M, Smith T, Ostermeier S (2014) Dynamic versus static reconstruction of the medial patellofemoral ligament for recurrent lateral patellar dislocation. Knee Surg Sports Traumatol Arthrosc 22(10):2452–2457CrossRefPubMedGoogle Scholar
  7. 7.
    Blankevoort L, Huiskes R (1991) Ligament-bone interaction in a three-dimensional model of the knee. J Biomech Eng 113(3):263–269CrossRefPubMedGoogle Scholar
  8. 8.
    Bollier M, Fulkerson J, Cosgarea A, Tanaka M (2011) Technical failure of medial patellofemoral ligament reconstruction. Arthroscopy 27(8):1153–1159CrossRefPubMedGoogle Scholar
  9. 9.
    Carnesecchi O, Philippot R, Boyer B, Farizon F, Edouard P (2016) Recovery of gait pattern after medial patellofemoral ligament reconstruction for objective patellar instability. Knee Surg Sports Traumatol Arthrosc 24(1):123–128CrossRefPubMedGoogle Scholar
  10. 10.
    Elias JJ, Cosgarea AJ (2006) Technical errors during medial patellofemoral ligament reconstruction could overload medial patellofemoral cartilage: a computational analysis. Am J Sports Med 34(9):1478–1485CrossRefPubMedGoogle Scholar
  11. 11.
    Fujino K, Tajima G, Yan J, Kamei Y, Maruyama M, Takeda S, Kikuchi S, Shimamura T (2015) Morphology of the femoral insertion site of the medial patellofemoral ligament. Knee Surg Sports Traumatol Arthrosc 23(4):998–1003CrossRefPubMedGoogle Scholar
  12. 12.
    Geier A, Tischer T, Bader R (2015) Simulation of varying femoral attachment sites of the medial patellofemoral ligament using a musculoskeletal multi-body model. Curr Dir Biomed Eng 1(1):547–551Google Scholar
  13. 13.
    Hefzy MS, Jackson WT, Saddemi SR, Hsieh YF (1992) Effects of tibial rotations on patellar tracking and patello-femoral contact areas. J Biomed Eng 14(4):329–343CrossRefPubMedGoogle Scholar
  14. 14.
    Hippmann G (2004) An algorithm for compliant contact between complexly shaped surfaces in multibody dynamics. Multibody Syst Dyn 12:345–362CrossRefGoogle Scholar
  15. 15.
    Jacobi M, Reischl N, Bergmann M, Bouaicha S, Djonov V, Magnussen RA (2012) Reconstruction of the medial patellofemoral ligament using the adductor magnus tendon: an anatomic study. Arthroscopy 28(1):105–109CrossRefPubMedGoogle Scholar
  16. 16.
    Koh TJ, Grabiner MD, De Swart RJ (1992) In vivo tracking of the human patella. J Biomech 25(6):637–643CrossRefPubMedGoogle Scholar
  17. 17.
    Lehner S (2008) Entwicklung und Validierung biomechanischer Computermodelle und deren Einsatz in der Sportwissenschaft. Universität Koblenz-LandauGoogle Scholar
  18. 18.
    Lenschow S, Schliemann B, Gestring J, Herbort M, Schulze M, Kosters C (2013) Medial patellofemoral ligament reconstruction: fixation strength of 5 different techniques for graft fixation at the patella. Arthroscopy 29(4):766–773CrossRefPubMedGoogle Scholar
  19. 19.
    Magnussen RA, De Simone V, Lustig S, Neyret P, Flanigan DC (2013) Treatment of patella alta in patients with episodic patellar dislocation: a systematic review. Knee Surg Sports Traumatol Arthrosc 22(10):2545–2550CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nagerl H, Kubein-Meesenburg D, Cotta H, Fanghanel J (1993) Biomechanical principles of diarthroses and synarthroses. III: mechanical aspects of the tibiofemoral joint and role of the cruciate ligaments. Z Orthop Ihre Grenzgeb 131(5):385–396CrossRefPubMedGoogle Scholar
  21. 21.
    Nha KW, Papannagari R, Gill TJ, Van de Velde SK, Freiberg AA, Rubash HE, Li G (2008) In vivo patellar tracking: clinical motions and patellofemoral indices. J Orthop Res 26(8):1067–1074CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Oka S, Matsushita T, Kubo S, Matsumoto T, Tajimi H, Kurosaka M, Kuroda R (2014) Simulation of the optimal femoral insertion site in medial patellofemoral ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 22(10):2364–2371CrossRefPubMedGoogle Scholar
  23. 23.
    Parikh SN, Nathan ST, Wall EJ, Eismann EA (2013) Complications of medial patellofemoral ligament reconstruction in young patients. Am J Sports Med 41(5):1030–1038CrossRefPubMedGoogle Scholar
  24. 24.
    Placella G, Tei MM, Sebastiani E, Criscenti G, Speziali A, Mazzola C, Georgoulis A, Cerulli G (2014) Shape and size of the medial patellofemoral ligament for the best surgical reconstruction: a human cadaveric study. Knee Surg Sports Traumatol Arthrosc 22(10):2327–2333CrossRefPubMedGoogle Scholar
  25. 25.
    Sanchis-Alfonso V, Ramirez-Fuentes C, Montesinos-Berry E, Aparisi-Rodriguez F, Marti-Bonmati L (2015) Does radiographic location ensure precise anatomic location of the femoral fixation site in medial patellofemoral ligament surgery? Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3523-x
  26. 26.
    Schottle PB, Schmeling A, Rosenstiel N, Weiler A (2007) Radiographic landmarks for femoral tunnel placement in medial patellofemoral ligament reconstruction. Am J Sports Med 35(5):801–804CrossRefPubMedGoogle Scholar
  27. 27.
    Shabshin N, Schweitzer ME, Morrison WB, Parker L (2004) MRI criteria for patella alta and baja. Skelet Radiol 33(8):445–450CrossRefGoogle Scholar
  28. 28.
    Shah JN, Howard JS, Flanigan DC, Brophy RH, Carey JL, Lattermann C (2012) A systematic review of complications and failures associated with medial patellofemoral ligament reconstruction for recurrent patellar dislocation. Am J Sports Med 40(8):1916–1923CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sillanpaa P, Mattila VM, Visuri T, Maenpaa H, Pihlajamaki H (2008) Ligament reconstruction versus distal realignment for patellar dislocation. Clin Orthop Relat Res 466(6):1475–1484CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Song SY, Pang CH, Kim CH, Kim J, Choi ML, Seo YJ (2015) Length change behavior of virtual medial patellofemoral ligament fibers during in vivo knee flexion. Am J Sports Med 43(5):1165–1171CrossRefPubMedGoogle Scholar
  31. 31.
    Spagele T, Kistner A, Gollhofer A (1999) Modelling, simulation and optimisation of a human vertical jump. J Biomech 32(5):521–530CrossRefPubMedGoogle Scholar
  32. 32.
    Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D (1996) The visible human male: a technical report. J Am Med Inform Assoc 3(2):118–130CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stephen JM, Lumpaopong P, Deehan DJ, Kader D, Amis AA (2012) The medial patellofemoral ligament: location of femoral attachment and length change patterns resulting from anatomic and nonanatomic attachments. Am J Sports Med 40(8):1871–1879CrossRefPubMedGoogle Scholar
  34. 34.
    Stupay KL, Swart E, Shubin Stein BE (2015) Widespread implementation of medial patellofemoral ligament reconstruction for recurrent patellar instability maintains functional outcomes at midterm to long-term follow-up while decreasing complication rates: a systematic review. Arthroscopy 31(7):1372–1380CrossRefPubMedGoogle Scholar
  35. 35.
    Tanaka MJ, Bollier MJ, Andrish JT, Fulkerson JP, Cosgarea AJ (2012) Complications of medial patellofemoral ligament reconstruction: common technical errors and factors for success: AAOS exhibit selection. J Bone Joint Surg Am 94(12):e87. doi:10.2106/JBJS.K.01449 CrossRefPubMedGoogle Scholar
  36. 36.
    Tompkins MA, Arendt EA (2015) Patellar instability factors in isolated medial patellofemoral ligament reconstructions-what does the literature tell us? A systematic review. Am J Sports Med 43(9):2318–2327CrossRefPubMedGoogle Scholar
  37. 37.
    Torabi M, Wo S, Vyas D, Costello J (2015) MRI evaluation and complications of medial patellofemoral ligament reconstruction. Clin Imaging 39(1):116–127CrossRefPubMedGoogle Scholar
  38. 38.
    van Kampen A, Huiskes R (1990) The three-dimensional tracking pattern of the human patella. J Orthop Res 8(3):372–382CrossRefPubMedGoogle Scholar
  39. 39.
    Victor J, Wong P, Witvrouw E, Sloten JV, Bellemans J (2009) How isometric are the medial patellofemoral, superficial medial collateral, and lateral collateral ligaments of the knee? Am J Sports Med 37(10):2028–2036CrossRefPubMedGoogle Scholar
  40. 40.
    Yoo YS, Chang HG, Seo YJ, Byun JC, Lee GK, Im H, Song SY (2012) Changes in the length of the medial patellofemoral ligament: an in vivo analysis using 3-dimensional computed tomography. Am J Sports Med 40(9):2142–2148CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2016

Authors and Affiliations

  1. 1.Department of OrthopaedicsUniversity of RostockRostockGermany
  2. 2.Chair of Technical DynamicsUniversity of RostockRostockGermany

Personalised recommendations