Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 10, pp 3311–3318 | Cite as

Genetic biomarkers in non-contact muscle injuries in elite soccer players

  • Ricard Pruna
  • Rosa ArtellsEmail author
  • Matilda Lundblad
  • Nicola Maffulli
Sports Medicine

Abstract

Purpose

Damage to skeletal muscle necessitates regeneration to maintain proper muscle form and function. Interindividual differences in injury severity, recovery time, and injury rate could be explained by the presence of single nucleotide polymorphisms (SNPs) in genes involved in the reparation and regeneration of connective tissue . We wished to identify new genetic biomarkers that could help to prevent or minimize the risk of non-contact muscle injuries and are associated with a predisposition to developing muscle injuries.

Methods

Using allelic discrimination techniques, we analysed 12 SNPs in selected genes from the genomic DNA of 74 elite soccer players.

Results

SNPs in the hepatocyte growth factor (HGF) gene showed evidence of a statistically significant association with injury incidence, severity, and recovery time. SNPs in the SOX15 gene showed evidence of a statistically significant association with injury incidence. SNPs in the GEFT and LIF genes showed evidence of a statistically significant association with recovery time.

Conclusions

Genetic profile could explain why some elite soccer players are predisposed to suffer more injuries than others and why they need more time to recover from a particular injury. SNPs in HGF genes have an important role as biomarkers of biological processes fragility within muscle injuries related to injury rate, severity, and long recovery time.

Keywords

Connective tissue Muscle injury Single nucleotide polymorphisms Injury rate Recovery time 

Notes

Acknowledgments

We thank FC Barcelona Medical Services for all data provided.

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Adams GR (2002) Invited review: autocrine/paracrine IGF-I and skeletal muscle adaptation. J Appl Physiol 93(3):1159–1167CrossRefPubMedGoogle Scholar
  2. 2.
    Andermarcher E, Surani MA, Gherardi E (1996) Co-expression of the HGF/SF and c-Met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev Genet 18(3):254–266CrossRefPubMedGoogle Scholar
  3. 3.
    Armfield DR, Hyun-Min DK, Towers JD, Bradley JP, Robertson DD (2006) Sports-related muscle injury in the lower extremity. Clin Sports Med 25(4):803–842CrossRefPubMedGoogle Scholar
  4. 4.
    Arnason A, Sigurdsson SB, Gudmundsson A, HolmeI Engebretsen L, Bahr R (2004) Risk factors for injuries in football. Am J Sports Med 32(1 Suppl):5S–16SCrossRefPubMedGoogle Scholar
  5. 5.
    Bencardino JT, Rosenberg ZS, Brown RR, Hassankhani A, Lustrin ES, Beltran J (2000) traumatic musculotendinous injuries of the knee: diagnosis with MR imaging 1. Radiographics. 20(suppl 1):S103–S120CrossRefPubMedGoogle Scholar
  6. 6.
    Broholm C, Pedersen BK (2010) Leukaemia inhibitory factor—an exercise-induced myokine. Exerc Immunol Rev 16:77–85PubMedGoogle Scholar
  7. 7.
    Bryan BA, Mitchell DC, Zhao L et al (2005) Modulation of muscle regeneration, myogenesis, and adipogenesis by the Rho family guanine nucleotide exchange factor GEFT. Mol Cell Biol 25(24):11089–11101CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Collins M (2010) Genetic risk factors for soft-tissue injuries 101: a practical summary to help clinicians understand the role of genetics and ‘personalised medicine’. Br J Sports Med 44(13):915–917CrossRefPubMedGoogle Scholar
  9. 9.
    Collins M, Posthumus M (2011) Type V collagen genotype and exercise-related phenotype relationships: a novel hypothesis. Exerc Sport Sci Rev 39(4):191–198PubMedGoogle Scholar
  10. 10.
    Otto C, Del Buono A, Best TM, Maffulli N (2012) Acute muscle strain injuries: a proposed new classification system. Knee Surg Sports Traumatol Arthrosc 20(11):2356–2362CrossRefGoogle Scholar
  11. 11.
    Eirale C, TolJL, Farooq A, Smiley F, Chalabi H (2013) Low injury rate strongly correlates with team success in Qatari professional football. Br J Sports Med 47(12):807–808CrossRefPubMedGoogle Scholar
  12. 12.
    Ekstrand J, Hägglund M, Kristenson K, Magnusson H, Waldén M (2013) Fewer ligament injuries but no preventive effect on muscle injuries and severe injuries: an 11-year follow-up of the UEFA champions league injury study. Br J Sports Med 47(12):732–737CrossRefPubMedGoogle Scholar
  13. 13.
    Ekstrand J, Hägglund M, Waldén M (2011) Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 39(6):1226–1232CrossRefPubMedGoogle Scholar
  14. 14.
    Rodas G, Til L, Pruna R et al (2009) Guía de Práctica Clínica de las lesiones musculares. Epidemiología, diagnóstico, tratamiento y prevención. Versión 4.5 (9 de febrero de 2009). Apunts Med Esport 44 (164): 179–203Google Scholar
  15. 15.
    Fuller CW, Junge A, Dvorak J (2012) Risk management: FIFA’s approach for protecting the health of football players. Br J Sports Med 46(1):11–17CrossRefPubMedGoogle Scholar
  16. 16.
    Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy O (1998) Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim Biophys Acta 1402(1):39–51CrossRefPubMedGoogle Scholar
  17. 17.
    Gutiérrez J, Cabrera D, Brandan E (2014) Glypican-1 regulates myoblast response to HGF via Met in a lipid raft-dependent mechanism: effect on migration of skeletal muscle precursor cells. Skelet Muscle 4(1):1–16CrossRefGoogle Scholar
  18. 18.
    Hägglund M, Waldén M, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J (2013) Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA champions league injury study. Br J Sports Med 47(12):738–742CrossRefPubMedGoogle Scholar
  19. 19.
    Harmon BT, Orkunoglu-Suer EF, Adham K et al (2010) CCL2 and CCR2 variants are associated with skeletal muscle strength and change in strength with resistance training. J Appl Physiol 109(6):1779–1785CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hunt LC, Upadhyay A, Jazayeri JA, Tudor EM, White JD (2013) An anti-inflammatory role for leukemia inhibitory factor receptor signaling in regenerating skeletal muscle. Histochem Cell Biol 139(1):13–34CrossRefPubMedGoogle Scholar
  21. 21.
    Kambouris M, Del Buono A, Maffulli N (2014) Genomics DNA profiling in elite professional soccer players: a pilot study. Transl Med Unisa 9:18PubMedPubMedCentralGoogle Scholar
  22. 22.
    Kambouris M, Ntalouka F, Ziogas G, Maffulli N (2012) Predictive genomics DNA profiling for athletic performance. Recent Pat DNA Gene Seq 6(3):229–239CrossRefPubMedGoogle Scholar
  23. 23.
    Koulouris G, Connell D (2005) Hamstring muscle complex: an imaging review 1. Radiographics. 25(3):571–586CrossRefPubMedGoogle Scholar
  24. 24.
    Lee HJ, Göring W, Ochs M et al (2004) Sox15 is required for skeletal muscle regeneration. Mol Cell Biol 24(19):8428–8436CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lippi G, Longo UG, Maffulli N (2010) Genetics and sports. Br Med Bull 93(1):27–47CrossRefPubMedGoogle Scholar
  26. 26.
    Longo UG, Loppini M, Margiotti K et al (2013) Unravelling the genetic susceptibility to develop ligament and tendon injuries. Curr Stem Cell Res Ther 10(1):56–63CrossRefGoogle Scholar
  27. 27.
    Maffulli N, Margiotti K, Longo UG, Loppini M, Fazio VM, Denaro V (2013) The genetics of sports injuries and athletic performance. Muscle Ligaments Tendons J 3(3):173Google Scholar
  28. 28.
    Maffulli N, Nanni G (2013) ISMuLT skeletal muscles injuries guidelines. Muscle Ligaments Tendons J 3(4):240Google Scholar
  29. 29.
    Maughan RJ, Shirreffs SM, Ozgünen KT et al (2010) Living, training and playing in the heat: challenges to the football player and strategies for coping with environmental extremes. Scand J Med Sci Sports 20(s3):117–124CrossRefPubMedGoogle Scholar
  30. 30.
    Mechelen W, Hlobil H, Kemper HG (1992) Incidence, severity, aetiology and prevention of sports injuries. Sports Med 14(2):82–99CrossRefPubMedGoogle Scholar
  31. 31.
    Meeson AP, Shi X, Alexander MS et al (2007) Sox15 and Fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells. EMBO J 26(7):1902–1912CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Moraes VY, Lenza M, Tamaoki JM, Faloppa F, Belloti JC (2014) Platelet‐rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev 12:CD1010071Google Scholar
  33. 33.
    Owen AL, Forsyth JJ, Wong DP, Dellal A, Connelly S, Chamari K (2014) Heart rate based training intensity and its impact on injury incidence amongst elite level professional soccer players. J Strength Cond Res 29(6):1705–1712CrossRefGoogle Scholar
  34. 34.
    Pruna R, Artells R, Ribas J et al (2013) Single nucleotide polymorphisms associated with non-contact soft tissue injuries in elite professional soccer players Influence on degree of injury and recovery time. BMC Musculoskelet Disord 14(1):221CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pruna R, Medina D, Rodas G, Artells R (2013) Tendinopatía rotuliana. Modelo de actuación terapéutico en el deporte. Patellar tendinopathy. Therapetic model in the sport. Med Clin 141(3):119–124CrossRefGoogle Scholar
  36. 36.
    Pruna R, Til L, Artells R (2014) Could single nucleotide polymorphisms influence on the efficacy of platelet-rich plasma in the treatment of sport injuries? Muscles Ligaments Tendons J. 4(1):63PubMedPubMedCentralGoogle Scholar
  37. 37.
    Tatsumi R, Anderson JE, Nevoret CJ, Nevoret CJ, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194(1):114–128CrossRefPubMedGoogle Scholar
  38. 38.
    Volpi P, Taioli E (2012) The health profile of professional soccer players: future opportunities for injury prevention. J Strength Cond Res 26(12):3473–3479CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2016

Authors and Affiliations

  1. 1.F.C. Barcelona Medical ServicesFIFA Medical Center of ExcellenceBarcelonaSpain
  2. 2.SM GenomicsBarcelonaSpain
  3. 3.Department of OrthopaedicsSahlgrenska UniversityGothenburgSweden
  4. 4.Department of Musculoskeletal Disorders, Faculty of Medicine, Surgery and DentistryUniversity of SalernoFiscianoItaly
  5. 5.Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End HospitalQueen Mary University of LondonLondonEngland

Personalised recommendations