Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 8, pp 2536–2544 | Cite as

Double-bundle posterior cruciate ligament reconstruction: a biomechanical analysis of simulated early motion and partial and full weightbearing on common reconstruction grafts

  • William R. Mook
  • David Civitarese
  • Travis Lee Turnbull
  • Nicholas I. Kennedy
  • Luke O’Brien
  • Jarod B. Schoeberl
  • Robert F. LaPrade
Knee

Abstract

Purpose

The purpose of this study was to determine the biomechanical effects of simulated immediate motion and weightbearing during rehabilitation on different double-bundle posterior cruciate ligament reconstruction (DB-PCLR) graft options.

Methods

Nine each of commercially prepared (allograft) Achilles tendon allografts, fresh-frozen (autograft) bone-patellar tendon-bone grafts, and fresh-frozen quadriceps tendon grafts were paired with commercially prepared anterior tibialis allografts, fresh-frozen semitendinosus grafts, and fresh-frozen semitendinosus grafts, respectively. Graft pairs were loaded to simulate early range of motion on a stationary bicycle, partial weightbearing (30 %), and full weightbearing.

Results

Acquired laxity (displacement, mm) between graft pairs was not significantly different during simulated early range of motion. However, during simulated partial weightbearing, the median acquired laxity of the patellar tendon/semitendinosus pair (1.06 mm) was significantly less than that of the quadriceps tendon/semitendinosus (1.50 mm, p = 0.01) and Achilles/anterior tibialis (1.44 mm, p = 0.003) graft pairs. During simulated full weightbearing, significantly less acquired laxity was observed for the patellar tendon/semitendinosus graft pair (2.38 mm) compared to the Achilles/anterior tibialis pair (4.85 mm, p = 0.04), but a significant difference was not observed compared to the QT/semitendinosus graft pair (3.91 mm, n.s.). There were no significant differences in the ultimate loads between any of the graft pairs.

Conclusions

Simulated early range of motion and early partial weightbearing did not result in clinically significant acquired graft laxity in common graft options utilized for DB-PCLR. However, simulated full weightbearing did result in clinically significant acquired graft laxity, and therefore, early rehabilitation protocols should avoid implementing full weightbearing that could contribute to graft failure.

Keywords

Double-bundle posterior cruciate ligament reconstruction Rehabilitation Allograft Autograft Weightbearing Range of motion 

Notes

Acknowledgments

The authors thank Grant J. Dornan, MSc, for his assistance with statistical analysis. The authors thank Allosource (Centennial, Colorado) for the in-kind donation of allograft tissue.

References

  1. 1.
    Alfredson H, Nordstrom P, Lorentzon R (1996) Total and regional bone mass in female soccer players. Calcif Tissue Int 59(6):438–442CrossRefPubMedGoogle Scholar
  2. 2.
    Alfredson H, Nordstrom P, Lorentzon R (1997) Bone mass in female volleyball players: a comparison of total and regional bone mass in female volleyball players and nonactive females. Calcif Tissue Int 60(4):338–342CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson CJ, Ziegler CG, Wijdicks CA, Engebretsen L, LaPrade RF (2012) Arthroscopically pertinent anatomy of the anterolateral and posteromedial bundles of the posterior cruciate ligament. J Bone Joint Surg Am 94(21):1936–1945CrossRefPubMedGoogle Scholar
  4. 4.
    Barber FA (2013) Pullout strength of bone-patellar tendon-bone allograft bone plugs: a comparison of cadaver tibia and rigid polyurethane foam. Arthroscopy 29(9):1546–1551CrossRefPubMedGoogle Scholar
  5. 5.
    Berg EE (1995) Posterior cruciate ligament tibial inlay reconstruction. Arthroscopy 11(1):69–76CrossRefPubMedGoogle Scholar
  6. 6.
    Bergfeld JA, Graham SM, Parker RD, Valdevit AD, Kambic HE (2005) A biomechanical comparison of posterior cruciate ligament reconstructions using single- and double-bundle tibial inlay techniques. Am J Sports Med 33(7):976–981CrossRefPubMedGoogle Scholar
  7. 7.
    Ding M, Dalstra M, Danielsen CC, Kabel J, Hvid I, Linde F (1997) Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg Br 79(6):995–1002CrossRefPubMedGoogle Scholar
  8. 8.
    Edson CJ, Fanelli GC, Beck JD (2010) Postoperative rehabilitation of the posterior cruciate ligament. Sports Med Arthrosc 18(4):275–279CrossRefPubMedGoogle Scholar
  9. 9.
    Ericson MO, Nisell R (1986) Tibiofemoral joint forces during ergometer cycling. Am J Sports Med 14(4):285–290CrossRefPubMedGoogle Scholar
  10. 10.
    Fanelli GC (2008) Posterior cruciate ligament rehabilitation: how slow should we go? Arthroscopy 24(2):234–235CrossRefPubMedGoogle Scholar
  11. 11.
    Fanelli GC, Beck JD, Edson CJ (2012) Single compared to double-bundle PCL reconstruction using allograft tissue. J Knee Surg 25(1):59–64CrossRefPubMedGoogle Scholar
  12. 12.
    Gardner MJ, Silva MJ, Krieg JC (2012) Biomechanical testing of fracture fixation constructs: variability, validity, and clinical applicability. J Am Acad Orthop Surg 20(2):86–93PubMedGoogle Scholar
  13. 13.
    Golish SR, Mihalko WM (2011) Principles of biomechanics and biomaterials in orthopaedic surgery. J Bone Joint Surg Am 93(2):207–212CrossRefPubMedGoogle Scholar
  14. 14.
    Gong JK, Arnold JS, Cohn SH (1964) Composition of trabecular and cortical bone. Anat Rec 149:325–331CrossRefPubMedGoogle Scholar
  15. 15.
    Hamner DL, Brown CHJ, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81(4):549–557CrossRefPubMedGoogle Scholar
  16. 16.
    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD (2010) Quadriceps activation following knee injuries: a systematic review. J Athl Train 45(1):87–97CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hatayama K, Higuchi H, Kimura M, Kobayashi Y, Asagumo H, Takagishi K (2006) A comparison of arthroscopic single- and double-bundle posterior cruciate ligament reconstruction: review of 20 cases. Am J Orthop (Belle Mead NJ) 35(12):568–571Google Scholar
  18. 18.
    Huang TW, Wang CJ, Weng LH, Chan YS (2003) Reducing the “killer turn” in posterior cruciate ligament reconstruction. Arthroscopy 19(7):712–716CrossRefPubMedGoogle Scholar
  19. 19.
    Kennedy NI, LaPrade RF, Goldsmith MT, Faucett SC, Rasmussen MT, Coatney GA, Engebretsen L, Wijdicks CA (2014) Posterior cruciate ligament graft fixation angles, part 1: biomechanical evaluation for anatomic single-bundle reconstruction. Am J Sports Med 42(10):2338–2345CrossRefPubMedGoogle Scholar
  20. 20.
    Kennedy NI, LaPrade RF, Goldsmith MT, Faucett SC, Rasmussen MT, Coatney GA, Engebretsen L, Wijdicks CA (2014) Posterior cruciate ligament graft fixation angles, part 2: biomechanical evaluation for anatomic double-bundle reconstruction. Am J Sports Med 42(10):2346–2355CrossRefPubMedGoogle Scholar
  21. 21.
    Kennedy NI, Wijdicks CA, Goldsmith MT, Michalski MP, Devitt BM, Aroen A, Engebretsen L, LaPrade RF (2013) Kinematic analysis of the posterior cruciate ligament, part 1: the individual and collective function of the anterolateral and posteromedial bundles. Am J Sports Med 41(12):2828–2838CrossRefPubMedGoogle Scholar
  22. 22.
    Kim YM, Lee CA, Matava MJ (2011) Clinical results of arthroscopic single-bundle transtibial posterior cruciate ligament reconstruction: a systematic review. Am J Sports Med 39(2):425–434CrossRefPubMedGoogle Scholar
  23. 23.
    Kruse LM, Gray B, Wright RW (2012) Rehabilitation after anterior cruciate ligament reconstruction: a systematic review. J Bone Joint Surg Am 94(19):1737–1748CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    LaPrade CM, Civitarese DM, Rasmussen MT, LaPrade RF (2015) Emerging updates on the posterior cruciate ligament: a review of the current literature. Am J Sports Med. doi: 10.1177/0363546515572770 Google Scholar
  25. 25.
    Levy BA, Boyd JL, Stuart MJ (2011) Surgical treatment of acute and chronic anterior and posterior cruciate ligament and lateral side injuries of the knee. Sports Med Arthrosc 19(2):110–119CrossRefPubMedGoogle Scholar
  26. 26.
    Lipscomb AB Jr, Anderson AF, Norwig ED, Hovis WD, Brown DL (1993) Isolated posterior cruciate ligament reconstruction. Long-term results. Am J Sports Med 21(4):490–496CrossRefPubMedGoogle Scholar
  27. 27.
    Markolf KL, Feeley BT, Jackson SR, McAllister DR (2006) Biomechanical studies of double-bundle posterior cruciate ligament reconstructions. J Bone Joint Surg Am 88(8):1788–1794PubMedGoogle Scholar
  28. 28.
    Markolf KL, Graves BR, Sigward SM, Jackson SR, McAllister DR (2007) Effects of posterolateral reconstructions on external tibial rotation and forces in a posterior cruciate ligament graft. J Bone Joint Surg Am 89(11):2351–2358PubMedGoogle Scholar
  29. 29.
    Mook WR, Miller MD, Diduch DR, Hertel J, Boachie-Adjei Y, Hart JM (2009) Multiple-ligament knee injuries: a systematic review of the timing of operative intervention and postoperative rehabilitation. J Bone Joint Surg Am 91(12):2946–2957CrossRefPubMedGoogle Scholar
  30. 30.
    Morrison JB (1969) Function of the knee joint in various activities. Biomed Eng 4(12):573–580PubMedGoogle Scholar
  31. 31.
    Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3(1):51–61CrossRefPubMedGoogle Scholar
  32. 32.
    Nevill AM, Holder RL, Stewart AD (2003) Modeling elite male athletes’ peripheral bone mass, assessed using regional dual X-ray absorptiometry. Bone 32(1):62–68CrossRefPubMedGoogle Scholar
  33. 33.
    Nordstrom P, Lorentzon R (1996) Site-specific bone mass differences of the lower extremities in 17-year-old ice hockey players. Calcif Tissue Int 59(6):443–448CrossRefPubMedGoogle Scholar
  34. 34.
    Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66(3):344–352CrossRefPubMedGoogle Scholar
  35. 35.
    Nyland J, Hester P, Caborn DN (2002) Double-bundle posterior cruciate ligament reconstruction with allograft tissue: 2-year postoperative outcomes. Knee Surg Sports Traumatol Arthrosc 10(5):274–279CrossRefPubMedGoogle Scholar
  36. 36.
    Pierce CM, O’Brien L, Griffin LW, Laprade RF (2013) Posterior cruciate ligament tears: functional and postoperative rehabilitation. Knee Surg Sports Traumatol Arthrosc 21(5):1071–1084CrossRefPubMedGoogle Scholar
  37. 37.
    Race A, Amis AA (1994) The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech 27(1):13–24CrossRefPubMedGoogle Scholar
  38. 38.
    Race A, Amis AA (1998) PCL reconstruction. In vitro biomechanical comparison of ‘isometric’ versus single and double-bundled ‘anatomic’ grafts. J Bone Joint Surg Br 80(1):173–179CrossRefPubMedGoogle Scholar
  39. 39.
    Scheffler SU, Sudkamp NP, Gockenjan A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 18(3):304–315CrossRefPubMedGoogle Scholar
  40. 40.
    Schmalzried TP, Szuszczewicz ES, Northfield MR, Akizuki KH, Frankel RE, Belcher G, Amstutz HC (1998) Quantitative assessment of walking activity after total hip or knee replacement. J Bone Joint Surg Am 80(1):54–59CrossRefPubMedGoogle Scholar
  41. 41.
    Sell P, Collins M, Dove J (1988) Pedicle screws: axial pull-out strength in the lumbar spine. Spine (Phila Pa 1976) 13(9):1075–1076Google Scholar
  42. 42.
    Simonian PT, Sussmann PS, Baldini TH, Crockett HC, Wickiewicz TL (1998) Interference screw position and hamstring graft location for anterior cruciate ligament reconstruction. Arthroscopy 14(5):459–464CrossRefPubMedGoogle Scholar
  43. 43.
    Spiridonov SI, Slinkard NJ, LaPrade RF (2011) Isolated and combined grade-III posterior cruciate ligament tears treated with double-bundle reconstruction with use of endoscopically placed femoral tunnels and grafts: operative technique and clinical outcomes. J Bone Joint Surg Am 93(19):1773–1780CrossRefPubMedGoogle Scholar
  44. 44.
    Tsukada H, Ishibashi Y, Tsuda E, Fukuda A, Yamamoto Y, Toh S (2012) Biomechanical evaluation of an anatomic double-bundle posterior cruciate ligament reconstruction. Arthroscopy 28(2):264–271CrossRefPubMedGoogle Scholar
  45. 45.
    Veltri DM, Deng XH, Torzilli PA, Warren RF, Maynard MJ (1995) The role of the cruciate and posterolateral ligaments in stability of the knee. A biomechanical study. Am J Sports Med 23(4):436–443CrossRefPubMedGoogle Scholar
  46. 46.
    Veltri DM, Warren RF (1993) Isolated and combined posterior cruciate ligament injuries. J Am Acad Orthop Surg 1(2):67–75CrossRefPubMedGoogle Scholar
  47. 47.
    Wang CJ, Chen HS, Huang TW (2003) Outcome of arthroscopic single bundle reconstruction for complete posterior cruciate ligament tear. Injury 34(10):747–751CrossRefPubMedGoogle Scholar
  48. 48.
    Wang CJ, Weng LH, Hsu CC, Chan YS (2004) Arthroscopic single- versus double-bundle posterior cruciate ligament reconstructions using hamstring autograft. Injury 35(12):1293–1299CrossRefPubMedGoogle Scholar
  49. 49.
    Weiler A, Hoffmann RF, Stahelin AC, Bail HJ, Siepe CJ, Sudkamp NP (1998) Hamstring tendon fixation using interference screws: a biomechanical study in calf tibial bone. Arthroscopy 14(1):29–37CrossRefPubMedGoogle Scholar
  50. 50.
    Whiddon DR, Zehms CT, Miller MD, Quinby JS, Montgomery SL, Sekiya JK (2008) Double compared with single-bundle open inlay posterior cruciate ligament reconstruction in a cadaver model. J Bone Joint Surg Am 90(9):1820–1829CrossRefPubMedGoogle Scholar
  51. 51.
    Wijdicks CA, Kennedy NI, Goldsmith MT, Devitt BM, Michalski MP, Aroen A, Engebretsen L, LaPrade RF (2013) Kinematic analysis of the posterior cruciate ligament, part 2: a comparison of anatomic single- versus double-bundle reconstruction. Am J Sports Med 41(12):2839–2848CrossRefPubMedGoogle Scholar
  52. 52.
    Woo SL, Gomez MA, Seguchi Y, Endo CM, Akeson WH (1983) Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res 1(1):22–29CrossRefPubMedGoogle Scholar
  53. 53.
    Woo SL, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH (1987) The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am 69(8):1200–1211CrossRefPubMedGoogle Scholar
  54. 54.
    Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19(3):217–225Google Scholar
  55. 55.
    Woo SL, Wu C, Dede O, Vercillo F, Noorani S (2006) Biomechanics and anterior cruciate ligament reconstruction. J Orthop Surg Res 1:2CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2016

Authors and Affiliations

  • William R. Mook
    • 1
    • 2
  • David Civitarese
    • 1
  • Travis Lee Turnbull
    • 1
  • Nicholas I. Kennedy
    • 1
  • Luke O’Brien
    • 3
  • Jarod B. Schoeberl
    • 2
  • Robert F. LaPrade
    • 1
    • 2
  1. 1.Steadman Philippon Research InstituteVailUSA
  2. 2.The Steadman ClinicVailUSA
  3. 3.Howard Head Sports Medicine CenterVailUSA

Personalised recommendations