Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 8, pp 2442–2446 | Cite as

Relationship between tibial spine size and the occurrence of osteochondritis dissecans: an argument in favour of the impingement theory

  • Etienne Cavaignac
  • Geoffroy Perroncel
  • Mathias Thépaut
  • Julie Vial
  • Franck Accadbled
  • Jérôme Sales De Gauzy
Knee

Abstract

Purpose

Pathophysiology of osteochondritis dissecans (OCD) of the medial femoral condyle remains uncertain. Specifically, the relationship between the size of the anterior tibial spine (ATS) and the presence of OCD has not been explored. The purpose of this study was to evaluate the relationship between ATS size and the occurrence of OCD.

Methods

Seventy-nine children between 8 and 17 years of age were included in two groups: OCD (n = 37) and control (n = 42). The groups were matched in terms of age, gender, BMI and weight. Two independent observers performed an MRI analysis of the size of the tibial spine and intercondylar notch relative to the size of the respective epiphyses. For this study, the “S ratio” was calculated by dividing the height of the tibial spine by the height of the tibial epiphysis. The “N ratio” was calculated by dividing the height of the notch by the height of the femoral epiphysis. These two ratios for both groups were compared using Student’s t test.

Results

The mean value of the S ratio in the OCD group was 0.39 ± 0.06; the mean value of the S ratio in the control group was 0.32 ± 0.03 (P = 0.004). The mean value of the N ratio in the OCD group was 0.70 ± 0.08; the mean value of the N ratio in the control group was 0.70 ± 0.07 (n.s.).

Conclusion

This study’s findings confirm our hypothesis that patients with OCD have a more prominent tibial spine than in patients without OCD.

Level of evidence

IV.

Keywords

Medial tibial spine Osteochondritis dissecans Knee Impingement 

Notes

Compliance with ethical standards

Conflict of interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

References

  1. 1.
    Balcarek P, Terwey A, Jung K, Walde TA, Frosch S, Schuttrumpf JP, Wachowski MM, Dathe H, Sturmer KM (2013) Influence of tibial slope asymmetry on femoral rotation in patients with lateral patellar instability. Knee Surg Sports Traumatol Arthrosc 21(9):2155–2163CrossRefPubMedGoogle Scholar
  2. 2.
    Bramer JA, Maas M, Dallinga RJ, te Slaa RL, Vergroesen DA (2004) Increased external tibial torsion and osteochondritis dissecans of the knee. Clin Orthop Relat Res 422:175–179CrossRefGoogle Scholar
  3. 3.
    Carey J, Spence L, Blickman H, Eustace S (1998) MRI of pediatric growth plate injury: correlation with plain film radiographs and clinical outcome. Skeletal Radiol 27(5):250–255CrossRefPubMedGoogle Scholar
  4. 4.
    Chiroff RT, Cooke CP 3rd (1975) Osteochondritis dissecans: a histologic and microradiographic analysis of surgically excised lesions. J Trauma 15(8):689–696CrossRefPubMedGoogle Scholar
  5. 5.
    Cooke TD, Pichora D, Siu D, Scudamore RA, Bryant JT (1989) Surgical implications of varus deformity of the knee with obliquity of joint surfaces. J Bone Joint Surg Br 71(4):560–565PubMedGoogle Scholar
  6. 6.
    Deie M, Ochi M, Sumen Y, Kawasaki K, Adachi N, Yasunaga Y, Ishida O (2006) Relationship between osteochondritis dissecans of the lateral femoral condyle and lateral menisci types. J Pediatr Orthop 26(1):79–82CrossRefPubMedGoogle Scholar
  7. 7.
    Fairbanks H (1933) Osteochondritis dissecans. Br J Surg 21:67–82CrossRefGoogle Scholar
  8. 8.
    George J, Nagendran J, Azmi K (2012) Comparison study of growth plate fusion using MRI versus plain radiographs as used in age determination for exclusion of overaged football players. Br J Sports Med 46(4):273–278CrossRefPubMedGoogle Scholar
  9. 9.
    Green WT, Banks HH (1953) Osteochondritis dissecans in children. J Bone Joint Surg Am 35-A(1):26–47CrossRefPubMedGoogle Scholar
  10. 10.
    Hashemi J, Chandrashekar N, Gill B, Beynnon BD, Slauterbeck JR, Schutt RC Jr, Mansouri H, Dabezies E (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90(12):2724–2734CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jacobi M, Wahl P, Bouaicha S, Jakob RP, Gautier E (2010) Association between mechanical axis of the leg and osteochondritis dissecans of the knee: radiographic study on 103 knees. Am J Sports Med 38(7):1425–1428CrossRefPubMedGoogle Scholar
  12. 12.
    Kancherla VK, Caggiano NM, Matullo KS (2014) Elbow injuries in the throwing athlete. Orthop Clin North Am 45(4):571–585CrossRefPubMedGoogle Scholar
  13. 13.
    Koch S, Kampen WU, Laprell H (1997) Cartilage and bone morphology in osteochondritis dissecans. Knee Surg Sports Traumatol Arthrosc 5(1):42–45CrossRefPubMedGoogle Scholar
  14. 14.
    Kocher MS, Tucker R, Ganley TJ, Flynn JM (2006) Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med 34(7):1181–1191CrossRefPubMedGoogle Scholar
  15. 15.
    Li G, DeFrate LE, Park SE, Gill TJ, Rubash HE (2005) In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. Am J Sports Med 33(1):102–107CrossRefPubMedGoogle Scholar
  16. 16.
    Li G, Defrate LE, Rubash HE, Gill TJ (2005) In vivo kinematics of the ACL during weight-bearing knee flexion. J Orthop Res 23(2):340–344CrossRefPubMedGoogle Scholar
  17. 17.
    Linden B (1976) The incidence of osteochondritis dissecans in the condyles of the femur. Acta Orthop Scand 47(6):664–667CrossRefPubMedGoogle Scholar
  18. 18.
    Nissen CW (2014) Osteochondritis dissecans of the elbow. Clin Sports Med 33(2):251–265CrossRefPubMedGoogle Scholar
  19. 19.
    Reddy AS, Frederick RW (1998) Evaluation of the intraosseous and extraosseous blood supply to the distal femoral condyles. Am J Sports Med 26(3):415–419CrossRefPubMedGoogle Scholar
  20. 20.
    Ribbing S (1955) The hereditary multiple epiphyseal disturbance and its consequences for the aetiogenesis of local malacias–particularly the osteochondrosis dissecans. Acta Orthop Scand 24(4):286–299PubMedGoogle Scholar
  21. 21.
    Sales de Gauzy J, Mansat C, Darodes PH, Cahuzac JP (1999) Natural course of osteochondritis dissecans in children. J Pediatr Orthop B 8(1):26–28PubMedGoogle Scholar
  22. 22.
    Shultz SJ, Schmitz RJ (2012) Tibial plateau geometry influences lower extremity biomechanics during landing. Am J Sports Med 40(9):2029–2036CrossRefPubMedGoogle Scholar
  23. 23.
    Smillie IS (1957) Treatment of osteochondritis dissecans. J Bone Joint Surg Br 39-B(2):248–260Google Scholar
  24. 24.
    Sturnick DR, Argentieri EC, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW, Slauterbeck JR, Johnson RJ, Shultz SJ, Beynnon BD (2014) A decreased volume of the medial tibial spine is associated with an increased risk of suffering an anterior cruciate ligament injury for males but not females. J Orthop Res 32(11):1451–1457CrossRefPubMedGoogle Scholar
  25. 25.
    Tomatsu T (1992) Osteochondritis dissecans of the knee–its pathogenesis and treatment. Nihon Seikeigeka Gakkai Zasshi 66(12):1266–1275PubMedGoogle Scholar
  26. 26.
    Turner MS (1994) The association between tibial torsion and knee joint pathology. Clin Orthop Relat Res 302:47–51Google Scholar
  27. 27.
    Turner MS, Smillie IS (1981) The effect of tibial torsion of the pathology of the knee. J Bone Joint Surg Br 63-B(3):396–398PubMedGoogle Scholar
  28. 28.
    Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop Relat Res 109:184–192CrossRefGoogle Scholar
  29. 29.
    Wechter JF, Sikka RS, Alwan M, Nelson BJ, Tompkins M (2014) Proximal tibial morphology and its correlation with osteochondritis dissecans of the knee. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-014-3289-6 Google Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2015

Authors and Affiliations

  • Etienne Cavaignac
    • 1
  • Geoffroy Perroncel
    • 2
  • Mathias Thépaut
    • 3
  • Julie Vial
    • 2
  • Franck Accadbled
    • 3
  • Jérôme Sales De Gauzy
    • 3
  1. 1.Musculoskeletal InstituteHôpital Pierre Paul RiquetToulouseFrance
  2. 2.Pediatric Radiology DepartmentHôpital des enfantsToulouseFrance
  3. 3.Pediatric Orthopedic Surgery DepartmentHôpital des enfantsToulouseFrance

Personalised recommendations