Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 25, Issue 8, pp 2397–2404 | Cite as

Proximal tibial fracture following anterior cruciate ligament reconstruction surgery: a biomechanical analysis of the tibial tunnel as a stress riser

  • Wassim Aldebeyan
  • Antony Liddell
  • Thomas Steffen
  • Lorne Beckman
  • Paul A. Martineau



This is the first biomechanical study to examine the potential stress riser effect of the tibial tunnel or tunnels after ACL reconstruction surgery. In keeping with literature, the primary hypothesis tested in this study was that the tibial tunnel acts as a stress riser for fracture propagation. Secondary hypotheses were that the stress riser effect increases with the size of the tunnel (8 vs. 10 mm), the orientation of the tunnel [standard (STT) vs. modified transtibial (MTT)], and with the number of tunnels (1 vs. 2).


Tibial tunnels simulating both single bundle hamstring graft (8 mm) and bone-patellar tendon-bone graft (10 mm) either STT or MTT position, as well as tunnels simulating double bundle (DB) ACL reconstruction (7, 6 mm), were drilled in fourth-generation saw bones. These five experimental groups and a control group consisting of native saw bones without tunnels were loaded to failure on a Materials Testing System to simulate tibial plateau fracture.


There were no statistically significant differences in peak load to failure between any of the groups, including the control group. The fracture occurred through the tibial tunnel in 100 % of the MTT tunnels (8 and 10 mm) and 80 % of the DB tunnels specimens; however, the fractures never (0 %) occurred through the tibial tunnel of the standard tunnels (8 or 10 mm) (P = 0.032).


In the biomechanical model, the tibial tunnel does not appear to be a stress riser for fracture propagation, despite suggestions to the contrary in the literature. Use of a standard, more vertical tunnel decreases the risk of ACL graft compromise in the event of a fracture. This may help to inform surgical decision making on ACL reconstruction technique.


Anterior cruciate ligament reconstruction Fracture Stress riser Biomechanical 



The senior author would like to acknowledge the support of Consultation Semperform Inc. in this research endeavour.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Allum R (2003) Complications of arthroscopic reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 85(1):12–16CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson AW, Smith JJ (2009) Proximal tibial fracture after patellar tendon autograft for ipsilateral ACL reconstruction. J Knee Surg 22(2):142–144CrossRefPubMedGoogle Scholar
  3. 3.
    Brooks DB, Burstein AH, Frankel VH (1970) The biomechanics of torsional fractures. The stress concentration effect of a drill hole. J Bone Joint Surg Am 52(3):507–514CrossRefPubMedGoogle Scholar
  4. 4.
    Cha PS, Brucker PU, West RV, Zelle BA, Yagi M, Kurosaka M, Fu FH (2005) Arthroscopic double-bundle anterior cruciate ligament reconstruction: an anatomic approach. Arthroscopy 21(10):1275CrossRefPubMedGoogle Scholar
  5. 5.
    Chhabra A, Diduch DR, Blessey PB, Miller MD (2004) Recreating an acceptable angle of the tibial tunnel in the coronal plane in anterior cruciate ligament reconstruction using external landmarks. Arthroscopy 20(3):328–330CrossRefPubMedGoogle Scholar
  6. 6.
    Chong AC, Miller F, Buxton M, Friis EA (2007) Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone. J Biomech Eng 129(4):487–493CrossRefPubMedGoogle Scholar
  7. 7.
    Clark CR, Morgan C, Sonstegard DA, Matthews LS (1977) The effect of biopsy-hole shape and size on bone strength. J Bone Joint Surg Am 59(2):213–217CrossRefPubMedGoogle Scholar
  8. 8.
    Delcogliano A, Chiossi S, Caporaso A, Franzese S, Menghi A (2001) Tibial plateau fracture after arthroscopic anterior cruciate ligament reconstruction. Arthroscopy 17(4):E16CrossRefPubMedGoogle Scholar
  9. 9.
    Edwards A, Bull AM, Amis AA (2007) The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament: Part 1: tibial attachment. Knee Surg Sports Traumatol Arthrosc 15(12):1414–1421CrossRefPubMedGoogle Scholar
  10. 10.
    Ekdahl M, Wang JH, Ronga M, Fu FH (2008) Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16(10):935–947CrossRefPubMedGoogle Scholar
  11. 11.
    El-Hage ZM, Mohammed A, Griffiths D, Richardson JB (1998) Tibial plateau fracture following allograft anterior cruciate ligament (ACL) reconstruction. Injury 29(1):73–74CrossRefPubMedGoogle Scholar
  12. 12.
    Fauno P, Kaalund S (2005) Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study. Arthroscopy 21(11):1337–1341CrossRefPubMedGoogle Scholar
  13. 13.
    Gobbi A, Mahajan V, Karnatzikos G (2011) Tibial plateau fracture after primary anatomic double-bundle anterior cruciate ligament reconstruction: a case report. Arthroscopy 27(5):735–740CrossRefPubMedGoogle Scholar
  14. 14.
    Han Y, Sardar Z, McGrail S, Steffen T, Martineau PA (2011) Peri-anterior cruciate ligament reconstruction femur fracture: a biomechanical analysis of the femoral tunnel as a stress riser. Knee Surg Sports Traumatol Arthrosc 19(Suppl 1):S77–S85CrossRefPubMedGoogle Scholar
  15. 15.
    Heiner AD (2008) Structural properties of fourth-generation composite femurs and tibias. J Biomech 41(15):3282–3284CrossRefPubMedGoogle Scholar
  16. 16.
    Honkonen SE (1995) Degenerative arthritis after tibial plateau fractures. J Orthop Trauma 9(4):273–277CrossRefPubMedGoogle Scholar
  17. 17.
    Jameson SS, Dowen D, James P, Serrano-Pedraza I, Reed MR, Deehan D (2012) Complications following anterior cruciate ligament reconstruction in the English NHS. Knee 19(1):14–19CrossRefPubMedGoogle Scholar
  18. 18.
    Johnson BA, Fallat LM (1997) The effect of screw holes on bone strength. J Foot Ankle Surg 36(6):446–451CrossRefPubMedGoogle Scholar
  19. 19.
    Kato Y, Maeyama A, Lertwanich P, Wang JH, Ingham SJ, Kramer S, Martins CQ, Smolinski P, Fu FH (2013) Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(4):816–823CrossRefPubMedGoogle Scholar
  20. 20.
    Linn RM, Fischer DA, Smith JP, Burstein DB, Quick DC (1993) Achilles tendon allograft reconstruction of the anterior cruciate ligament-deficient knee. Am J Sports Med 21(6):825–831CrossRefPubMedGoogle Scholar
  21. 21.
    Mithofer K, Gill TJ, Vrahas MS (2004) Tibial plateau fracture following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12(4):325–328CrossRefPubMedGoogle Scholar
  22. 22.
    Moen KY, Boynton MD, Raasch WG (1998) Fracture of the proximal tibia after anterior cruciate ligament reconstruction: a case report. Am J Orthop (Belle Mead NJ) 27(9):629–630Google Scholar
  23. 23.
    Morgan E, Steensen RN (1998) Traumatic proximal tibial fracture following anterior cruciate ligament reconstruction. Am J Knee Surg 11(3):193–194PubMedGoogle Scholar
  24. 24.
    Muller B, Hofbauer M, Wongcharoenwatana J, Fu FH (2013) Indications and contraindications for double-bundle ACL reconstruction. Int Orthop 37(2):239–246CrossRefPubMedGoogle Scholar
  25. 25.
    Piasecki DP, Bach BR Jr, Espinoza Orias AA, Verma NN (2011) Anterior cruciate ligament reconstruction: Can anatomic femoral placement be achieved with a transtibial technique? Am J Sports Med 39(6):1306–1315CrossRefPubMedGoogle Scholar
  26. 26.
    Polyzois I, Manidakis N, Graham S, Tsiridis E (2009) An unusual periarticular fracture following ipsilateral anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 17(5):503–507CrossRefPubMedGoogle Scholar
  27. 27.
    Rosson J, Egan J, Shearer J, Monro P (1991) Bone weakness after the removal of plates and screws. Cortical atrophy or screw holes? J Bone Joint Surg Br 73(2):283–286PubMedGoogle Scholar
  28. 28.
    Rue JP, Ghodadra N, Lewis PB, Bach BR Jr (2008) Femoral and tibial tunnel position using a transtibial drilled anterior cruciate ligament reconstruction technique. J Knee Surg 21(3):246–249CrossRefPubMedGoogle Scholar
  29. 29.
    Salem KR, Rees DC, Geutjens G (2007) Low velocity bicondylar tibial fracture following ACL reconstruction. Injury Extra 38(5):179–181CrossRefGoogle Scholar
  30. 30.
    Schatzker J (1974) Compression in the surgical treatment of fractures of the tibia. Clin Orthop Relat Res 105:220–239CrossRefGoogle Scholar
  31. 31.
    Sekiya JK, Ong BC, Bradley JP (2003) Complications in anterior cruciate ligament surgery. Orthop Clin North Am 34(1):99–105CrossRefPubMedGoogle Scholar
  32. 32.
    Sundaram RO, Cohen D, Barton-Hanson N (2006) Tibial plateau fracture following gracilis-semitendinosus anterior cruciate ligament reconstruction: the tibial tunnel stress-riser. Knee 13(3):238–240CrossRefPubMedGoogle Scholar
  33. 33.
    Taylor SJ, Walker PS (2001) Forces and moments telemetered from two distal femoral replacements during various activities. J Biomech 34(7):839–848CrossRefPubMedGoogle Scholar
  34. 34.
    Taylor SJ, Walker PS, Perry JS, Cannon SR, Woledge R (1998) The forces in the distal femur and the knee during walking and other activities measured by telemetry. J Arthroplasty 13(4):428–437CrossRefPubMedGoogle Scholar
  35. 35.
    Thaunat M, Nourissat G, Gaudin P, Beaufils P (2006) Tibial plateau fracture after anterior cruciate ligament reconstruction: role of the interference screw resorption in the stress riser effect. Knee 13(3):241–243CrossRefPubMedGoogle Scholar
  36. 36.
    Thietje R, Faschingbauer M, Nurnberg HJ (2000) Spontaneous fracture of the tibia after replacement of the anterior cruciate ligament with absorbable interference screws. A case report and review of the literature. Unfallchirurg 103(7):594–596CrossRefPubMedGoogle Scholar
  37. 37.
    Van der Bracht H, Verhelst L, Goubau Y, Fieuws S, Verdonk P, Bellemans J (2012) The lateral tibial tunnel in revision anterior cruciate ligament surgery: a biomechanical study of a new technique. Arthroscopy 28(6):818–826CrossRefPubMedGoogle Scholar
  38. 38.
    Veltri DM (1997) Arthroscopic anterior cruciate ligament reconstruction. Clin Sports Med 16(1):123–144CrossRefPubMedGoogle Scholar
  39. 39.
    Voos JE, Drakos MC, Lorich DG, Fealy S (2008) Proximal tibia fracture after anterior cruciate ligament reconstruction using bone-patellar tendon-bone autograft: a case report. HSS J 4(1):20–24CrossRefPubMedGoogle Scholar
  40. 40.
    Wong JJ, Muir B (2013) Insufficiency fracture of the tibial plateau after anterior cruciate ligament reconstructive surgery: a case report and review of the literature. J Can Chiropr Assoc 57(2):123–131PubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2015

Authors and Affiliations

  • Wassim Aldebeyan
    • 1
  • Antony Liddell
    • 1
  • Thomas Steffen
    • 2
  • Lorne Beckman
    • 2
  • Paul A. Martineau
    • 1
  1. 1.Department of Orthopaedic SurgeryMcGill UniversityMontrealCanada
  2. 2.Orthopaedic Research LaboratoryMcGill UniversityMontrealCanada

Personalised recommendations