Functional performance 2–9 years after ACL reconstruction: cross-sectional comparison between athletes with bone–patellar tendon–bone, semitendinosus/gracilis and healthy controls

  • Nicky Engelen-van MelickEmail author
  • Robert E. H. van Cingel
  • Tony G. van Tienen
  • Maria W. G. Nijhuis-van der Sanden



The purpose of this cross-sectional study was to provide descriptive data on functional performance in men and women with ACLR, to compare bone–patellar tendon–bone (BPTB) with semitendinosus/gracilis (STG) within the same sex and to compare the ACLR subjects with healthy controls.


Eligible participants comprised 100 men (43 % BPTB) and 84 women (41 % BPTB) after ACLR, of whom 30 men (STG n = 19; BPTB n = 11) and 18 women (STG n = 12; BPTB n = 6) were untraceable/not willing and 15 men (STG n = 9; BPTB n = 6) and 18 women (STG n = 12; BPTB n = 3) were not able to take part in the measurements because of injury. Besides men BPTB (n = 24), men STG (n = 27), women BPTB (n = 23) and women STG (n = 23), healthy men (n = 22) and women (n = 22) participated. Measurements consisted of questionnaires, isokinetic peak torque and endurance tests, a hop test battery and drop jump including video analysis.


Only the occurrence of dynamic knee valgus differed between ACLR and healthy subjects.


Two to nine years after ACLR, 16 % of athletes could not participate because of a lower extremity injury. In the remaining group, this study showed similar results for males and females with BPTB compared with STG. Also, similar results are found for quantity of movement comparing operated and healthy subjects. For quality of movement, only the occurrence of dynamic knee valgus in landing from a jump is higher in operated subjects compared with healthy controls. This supports the relevance of a focus on quality of movement as part of ACLR rehabilitation programmes and return to sports criteria.

Level of evidence



Anterior cruciate ligament reconstruction Functional performance Quality of movement Quantity of movement 


  1. 1.
    Aagaard P, Simonsen EB, Magnusson P, Larsson B, Dyhre-Poulsen P (1998) A new concept for isokinetic hamstring:quadriceps muscle strength ratio. Am J Sports Med 25(2):230–237Google Scholar
  2. 2.
    Ageberg E (2002) Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation: using the anterior cruciate ligament-injured knee as model. J Electromyogr Kinesiol 12(3):205–212CrossRefPubMedGoogle Scholar
  3. 3.
    Ahldén M, Samuelsson K, Sernert N, Forssblad M, Karlsson J, Kartus J (2012) The Swedish national anterior cruciate ligament register. A report on baseline variables and outcomes of surgery for almost 18,000 patients. Am J Sports Med 40(10):2230–2235CrossRefPubMedGoogle Scholar
  4. 4.
    Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematic review and meta-analysis of the state of play. Br J Sports Med 45(7):596–606CrossRefPubMedGoogle Scholar
  5. 5.
    Ardern CL, Taylor NF, Feller JA, Webster KE (2012) Return-to-sport outcomes at 2–7 years after anterior cruciate ligament reconstruction surgery. Am J Sports Med 40(1):41–48CrossRefPubMedGoogle Scholar
  6. 6.
    Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W (1990) Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res (255):204–214Google Scholar
  7. 7.
    Barber SD, Noyes FR, Mangine RE, DeMaio M (1992) Rehabilitation after ACL reconstruction: function testing. Orthopedics 15(8):969–974PubMedGoogle Scholar
  8. 8.
    Barber-Westin SD, Noyes FR (2011) Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. Phys Sports Med 39(3):100–110CrossRefGoogle Scholar
  9. 9.
    Barber-Westin SD, Noyes FR (2011) Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 27(12):1697–1705CrossRefPubMedGoogle Scholar
  10. 10.
    Bennett DR, Blackburn JT, Boling MC, McGrath M, Walusz H, Padua DA (2008) The relationship between anterior tibial shear force during a jump landing task and quadriceps and hamstring strength. Clin Biomech 23(9):1165–1171CrossRefGoogle Scholar
  11. 11.
    Bizzini M (2000) Sensomotorische Rehabilitation nach Beinverletzungen. Mit Fallbeispielen in allen Heilungsstadien. In: Dvorak J, Junge A (eds) F-MARC football medicine manual. FIFA, ZurichGoogle Scholar
  12. 12.
    Brophy RH, Schmitz L, Wright RW et al (2012) Return to play and future ACL injury risk after ACL reconstruction in soccer athletes from the Multicenter Orthopaedic Outcomes Network (MOON) group. Am J Sports Med 40(11):2517–2522CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33(7):1022–1029CrossRefPubMedGoogle Scholar
  14. 14.
    Che Tin Li R, Wu Y, Maffulli N, Chan KM, Chan JLC (1996) Eccentric and concentric isokinetic knee flexion and extension: a reliability study using the Cybex 6000 dynamometer. Br J Sports Med 30:156–160CrossRefGoogle Scholar
  15. 15.
    Chumanov ES, Heiderscheit BC, Thelen DG (2011) Hamstring musculotendon dynamics during stance and swing phases of high speed running. Med Sci Sports Exerc 43(3):525–532CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cometti G, Maffiuletti NA, Pousson M, Chatard JC, Maffulli N (2001) Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int J Sports Med 22(1):45–51CrossRefPubMedGoogle Scholar
  17. 17.
    Dvir Z, Eger G, Halperin N, Shklar A (1989) Thigh muscle activity and anterior cruciate ligament insufficiency. Clin Biomech 4(2):87–91CrossRefGoogle Scholar
  18. 18.
    Ekegren CL, Miller WC, Celebrini RG, Eng JJ, Macintyre DL (2009) Reliability and validity of observational risk screening in evaluating dynamic knee valgus. J Orthop Sports Phys Ther 39(9):665–674CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Engelen-van Melick N, Van Cingel REH, Tijssen MPW, Nijhuis-van der Sanden MWG (2013) Assessment of functional performance after anterior cruciate ligament reconstruction: a systematic review of measurement procedures. Knee Surg Sports Traumatol Arthrosc 21(4):869–879CrossRefPubMedGoogle Scholar
  20. 20.
    Feller J, Webster KE (2013) Return to sport following anterior cruciate ligament reconstruction. Int Orthop 37(2):285–290CrossRefPubMedGoogle Scholar
  21. 21.
    Givoni NJ, Pham T, Allen TJ, Proske U (2007) The effect of quadriceps muscle fatigue on position matching at the knee. J Physiol 584(pt1):111–119CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gregoire L, Veeger HE, Huijing PA, van Ingen Schenau GJ (1984) Role of mono- and bi-articular muscles in explosive movements. Int J Sports Med 5(6):301–305CrossRefPubMedGoogle Scholar
  23. 23.
    Gustavsson A, Neeter C, Thomeé P et al (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14(8):778CrossRefPubMedGoogle Scholar
  24. 24.
    Hewett TE, Myer GD, Ford KR et al (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes. A prospective study. Am J Sports Med 33(4):492–501CrossRefPubMedGoogle Scholar
  25. 25.
    Hiemstra LA, Lo IK, Fowler PJ (2001) Effect of fatigue on knee proprioception: implications for dynamic stabilization. J Orthop Sports Phys Ther 31(10):598–605CrossRefPubMedGoogle Scholar
  26. 26.
    Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2007) Contralateral limb strength deficits after anterior cruciate ligament reconstruction using hamstring tendon graft. Clin Biomech 22(5):543–550CrossRefGoogle Scholar
  27. 27.
    Impellizzeri FM, Bizzini M, Rampinini E, Cereda F, Maffiuletti NA (2008) Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin Physiol Funct Imaging 28(2):113–119CrossRefPubMedGoogle Scholar
  28. 28.
    Jenkins NDM, Hawkey MJ, Costa PB et al (2013) Functional hamstrings:quadriceps ratios in elite women’s soccer players. J Sports Sci 31(6):612–617CrossRefPubMedGoogle Scholar
  29. 29.
    LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL (2003) Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther 33(10):557–571CrossRefPubMedGoogle Scholar
  30. 30.
    Leetun DT, Ireland ML, Wilson JD, Ballantyne BT, Davis IM (2004) Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc 36(6):926–934CrossRefPubMedGoogle Scholar
  31. 31.
    MacCullough KA, Phelps KD, Spindler KP et al (2012) Return to high school- and college-level football after anterior cruciate ligament reconstruction: a Multicenter Orthopaedic Outcomes Network (MOON) cohort study. Am J Sports Med 40(11):2523–2529CrossRefGoogle Scholar
  32. 32.
    Mascarenhas R, Tranovich MJ, Kropf EJ, Fu FH, Harner CD (2012) Bone–patellar tendon–bone autograft versus hamstring autograft anterior cruciate ligament reconstruction in the young athlete: a retrospective matched analysis with 2–10 year follow-up. Knee Surg Sports Traumatol 20(8):1520–1527CrossRefGoogle Scholar
  33. 33.
    Melnyk M, Gollhofer A (2007) Submaximal fatigue of the hamstrings impairs specific reflex components and knee stability. Knee Surg Sports Traumatol Arthrosc 15(5):525–532CrossRefPubMedGoogle Scholar
  34. 34.
    Munro A, Herrington L, Carolan M (2012) Reliability of 2-dimensional video assessment of frontal-plane dynamic knee valgus during common athletic screening tasks. J Sport Rehabil 21(1):7–11CrossRefPubMedGoogle Scholar
  35. 35.
    Myer GD, Ford KR, Hewett TE (2004) Rationale and clinical techniques for anterior cruciate ligament injury prevention among female athletes. J Athl Train 39(4):352–364PubMedPubMedCentralGoogle Scholar
  36. 36.
    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2010) Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am J Sports Med 38(10):2025–2033CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J (2005) The drop–jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med 33(2):197–207CrossRefPubMedGoogle Scholar
  38. 38.
    Nyland J, Klein S, Caborn DNM (2010) Lower extremity compensatory neuromuscular and biomechanical adaptations 2–11 years after anterior cruciate ligament reconstruction. Arthroscopy 26(9):1212–1225CrossRefPubMedGoogle Scholar
  39. 39.
    Ocif J, Gardner C, Albright J, Pope M (2000) Chapter 15. In: Lephart SM, Fu FH (eds) Proprioception and neuromuscular control in joint stability. Human Kinetics, Pittsburgh, pp 161–180Google Scholar
  40. 40.
    Padua DA, Marshall SW, Boling MC, Thogpen CA, Garrett WE Jr, Beutler AI (2009) The landing error scoring system (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med 37(10):1996–2002CrossRefPubMedGoogle Scholar
  41. 41.
    Padua DA, Bling MC, DiStefano LJ, Onate JA, Beutler AI, Marshall SW (2011) Reliability of the landing error scoring system-real time, a clinical assessment tool of jump-landing biomechanics. J Sport Rehabil 20(2):145–156CrossRefPubMedGoogle Scholar
  42. 42.
    Paterno MV, Schmitt LC, Ford KR et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2012) Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clin J Sports Med 22(2):116–121CrossRefGoogle Scholar
  44. 44.
    Portes EM, Portes LA, Botelho VG, de Souza PintoS (2007) Isokinetic torque peak and hamstrings/quadriceps ratios in endurance athletes with anterior cruciate ligament laxity. Clinics 62(2):127–132CrossRefPubMedGoogle Scholar
  45. 45.
    Read MT, Bellamy MJ (1990) Comparison of hamstring/quadriceps isokinetic strength ratios and power in tennis, squash and track athletes. Br J Sports Med 24(3):178–182CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Renstrom P, Ljungqvist A, Arendt E, Beynnon B, Fukubayashi T, Garrett W et al (2008) Non-contact ACL injuries in female athletes: an international Olympic committee current concepts statement. Br J Sports Med 42(6):394–412CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21(8):948–957CrossRefPubMedGoogle Scholar
  48. 48.
    Shah VM, Andrews JR, Fleisig GS, McMichael CS, Lemak LJ (2010) Return to play after anterior cruciate ligament reconstruction in National Football League athletes. Am J Sports Med 38(11):2233–2239CrossRefPubMedGoogle Scholar
  49. 49.
    Simonsen EB, Thomsen L, Klausen K (1985) Activity of mono and biarticular leg muscles during sprint running. Eur J Appl Physiol Occup Physiol 54(5):524–532CrossRefPubMedGoogle Scholar
  50. 50.
    Taylor DC, DeBerardino TM, Nelson BJ et al (2009) Patellar tendon versus hamstring tendon autografts for anterior cruciate ligament reconstruction: a randomized controlled trial using similar femoral and tibial fixation methods. Am J Sports Med 37(10):1946–1957CrossRefPubMedGoogle Scholar
  51. 51.
    The Swedisch National ACL Register. Annual report 2011.
  52. 52.
    Thomas AC, McLean SG, Palmieri-Smith RM (2010) Quadriceps and hamstrings fatigue alters hip and knee mechanics. J Appl Biomech 26(2):159–170CrossRefPubMedGoogle Scholar
  53. 53.
    Thomeé R, Werner S (2011) Return to sport. Knee Surg Sports Traumatol Arthrosc 19(11):1795–1797CrossRefPubMedGoogle Scholar
  54. 54.
    Tsai LC, Sigward SM, Pollard CD, Fletcher MJ, Powers CM (2009) Effects of fatigue and recovery on knee mechanics during side-step cutting. Med Sci Sports Exerc 41(10):1952–1957CrossRefPubMedGoogle Scholar
  55. 55.
    Van Cingel RE, Kleinrensink G, Rooijens PP, Uitterlinden E, Aufdemkampe G, Stoeckart R (2001) Learning effect in isokinetic testing of ankle invertors and evertors. Isokinet Exerc Sci 9:171–177Google Scholar
  56. 56.
    Van Grinsven S, Van Cingel REH, Holla CJM, Van Loon CJ (2010) Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(8):1128–1144CrossRefPubMedGoogle Scholar
  57. 57.
    Von Porat A, Holström E, Roos E (2008) Reliability and validity of videotaped functional performance tests in ACL-injured subjects. Physiother Res Int 13(2):119–130CrossRefGoogle Scholar
  58. 58.
    Wojtys EM, Wylie BB, Huston LJ (1996) The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am J Sports Med 24(5):615–621CrossRefPubMedGoogle Scholar
  59. 59.
    Wright RW, Dunn WR, Amendola A et al (2007) Risk of tearing the intact anterior cruciate ligament in the contralateral knee and rupturing the anterior cruciate ligament graft during the first 2 years after anterior cruciate ligament reconstruction. A prospective MOON cohort study. Am J Sports Med 35(7):1113–1131CrossRefGoogle Scholar
  60. 60.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk. A prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130CrossRefPubMedGoogle Scholar
  61. 61.
    Zebis MK, Bencke J, Andersen LL et al (2011) Acute fatigue impairs neuromuscular activity of anterior cruciate ligament agonist muscles in female team handball players. Scand J Med Sci Sports 21(6):833–840CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2015

Authors and Affiliations

  • Nicky Engelen-van Melick
    • 1
    • 2
    Email author
  • Robert E. H. van Cingel
    • 3
    • 4
  • Tony G. van Tienen
    • 5
  • Maria W. G. Nijhuis-van der Sanden
    • 2
  1. 1.SteylThe Netherlands
  2. 2.Research Institute for Health Sciences, IQ HealthcareRadboud University Medical CenterNijmegenThe Netherlands
  3. 3.Sport Medisch Centrum PapendalArnhemThe Netherlands
  4. 4.Department of Musculoskeletal RehabilitationHAN University of Applied SciencesNijmegenThe Netherlands
  5. 5.Orthopaedic Research LaboratoryRadboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations