Prediction of semitendinosus–gracilis graft diameter in children and adolescents using anthropometric measures

  • Rafael Calvo R
  • Maximiliano Espinosa IEmail author
  • David Figueroa P
  • Rafael Calvo M



The aim of this study was to evaluate whether the anthropometric and demographic measures of patients under 18 years can be used to predict the diameter of STG autograft in ACL reconstruction surgery.


Retrospective series of 169 patients under 18 years (112 men, 57 women, average age 15.8 years) underwent ACL reconstruction surgery with STG autograft. We recorded anthropometric measures (weight, height and BMI), demographics (age and gender) and autograft diameter used. Correlation coefficients, linear regression and unpaired t test were used to determine the relationship between anthropometric/demographic variables and the diameter of the graft. p values <0.05 were considered statistically significant.


Correlation analysis showed a significant positive relation between height and graft diameter (r = 0.483, p < 0.0001) as well as between weight and graft diameter (r = 0.248, p = 0.001). However, age and BMI did not correlate with graft thickness (r = 0.098 and p = 0.203, r = 0.009 and p = 0.905, respectively). The mean graft diameter in men was 8.2 (range 6–10) and 7.5 in women (range 6–9), a difference that was statistically significant (p < 0.001).


Prediction of the STG graft diameter according to the height of the patient is an easy and reliable method in children and adolescents. These data may provide relevant preoperative information about the need of an alternative graft source and can be useful when counselling patients.

Level of evidence



Anterior cruciate ligament reconstruction Semitendinosus–gracilis autograft Graft diameter prediction Anthropometric measures Children Adolescents 


Disclosure of funding

No funding was received in order to perform the present study.


  1. 1.
    Bales CP, Guettler JH, Moorman CT 3rd (2004) Anterior cruciate ligament injuries in children with open physes: evolving strategies of treatment. Am J Sports Med 32:1978–1985CrossRefPubMedGoogle Scholar
  2. 2.
    Boisvert CB, Aubin ME, DeAngelis N (2011) Relationship between anthropometric measurements and hamstring autograft diameter in anterior cruciate ligament reconstruction. Am J Orthop (Belle Mead NJ) 40:293–295Google Scholar
  3. 3.
    Calvo R, Meleán P, Figueroa D, Vaisman A, Scheu M, Figueroa F (2011) ¿Existe correlación entre el peso y la talla del paciente con el largo y diámetro del injerto semitendinoso? Rev Esp Cir Ortop Traumatol. 55:2–8Google Scholar
  4. 4.
    Cassard X, Cavaignac E, Maubisson L, Bowen M (2014) Anterior cruciate ligament reconstruction in children with a quadrupled semitendinosus graft: preliminary results with minimum 2 years of follow-up. J Pediatr Orthop 34:70–77CrossRefPubMedGoogle Scholar
  5. 5.
    Çeliktaş M, Gölpinar A, Köse Ö, Sütoluk Z, Çelebi K, Sarpel Y (2013) Prediction of the quadruple hamstring autograft thickness in ACL reconstruction using anthropometric measures. Acta Orthop Traumatol Turc. 47:14–18CrossRefPubMedGoogle Scholar
  6. 6.
    Conte EJ, Hyatt AE, Gatt CJ, Dhawan A (2014) Hamstring autograft size can be predicted and is a potential risk factor for anterior cruciate ligament reconstruction failure. Arthroscopy 30:882–890CrossRefPubMedGoogle Scholar
  7. 7.
    Dodwell ER, Lamont LE, Green DW, Pan TJ, Marx RG, Lyman S (2014) 20 years of pediatric anterior cruciate ligament reconstruction in New York State. Am J Sports Med 42:675–680CrossRefPubMedGoogle Scholar
  8. 8.
    Hamner DL, Brown CH, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557PubMedGoogle Scholar
  9. 9.
    Hapa O, Barber FA (2009) ACL fixation devices. Sports Med Arthrosc. 17:217–223CrossRefPubMedGoogle Scholar
  10. 10.
    Ibrahim SA-R, Al-Kussary IM, Al-Misfer ARK, Al-Mutairi HQ, Ghafar SA, El Noor TA (2005) Clinical evaluation of arthroscopically assisted anterior cruciate ligament reconstruction: patellar tendon versus gracilis and semitendinosus autograft. Arthroscopy 21:412–417CrossRefPubMedGoogle Scholar
  11. 11.
    Kannus P, Järvinen M (1988) Knee ligament injuries in adolescents: eight year follow-up of conservative management. J Bone Joint Surg Br 70:772–776PubMedGoogle Scholar
  12. 12.
    Ma CB, Keifa E, Dunn W, Fu FH, Harner CD (2010) Can pre-operative measures predict quadruple hamstring graft diameter? Knee 17:81–83CrossRefPubMedGoogle Scholar
  13. 13.
    Magnussen RA, Lawrence JTR, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531CrossRefPubMedGoogle Scholar
  14. 14.
    McCarroll JR, Shelbourne KD, Porter DA, Rettig AC, Murray S (1994) Patellar tendon graft reconstruction for midsubstance anterior cruciate ligament rupture in junior high school athletes: an algorithm for management. Am J Sports Med 22:478–484CrossRefPubMedGoogle Scholar
  15. 15.
    Papastergiou SG, Stergios PG, Konstantinidis GA, Georgios KA, Natsis K, Konstantinos N, Papathanasiou E, Efthymia P, Koukoulias N, Nikolaos K, Papadopoulos AG, Alexandros PG (2012) Adequacy of semitendinosus tendon alone for anterior cruciate ligament reconstruction graft and prediction of hamstring graft size by evaluating simple anthropometric parameters. Anat Res Int 2012:424158PubMedGoogle Scholar
  16. 16.
    Pichler W, Tesch NP, Schwantzer G, Fronhöfer G, Boldin C, Hausleitner L, Grechenig W (2008) Differences in length and cross-section of semitendinosus and gracilis tendons and their effect on anterior cruciate ligament reconstruction: a cadaver study. J Bone Joint Surg Br 90:516–519CrossRefPubMedGoogle Scholar
  17. 17.
    Pinheiro LFB, de Andrade MAP, Teixeira LEM, Bicalho LAL, Lemos WG, Azeredo SAC, da Silva LA, Gonzaga LGA (2011) Intra-operative four-stranded hamstring tendon graft diameter evaluation. Knee Surg Sports Traumatol Arthrosc 19:811–815CrossRefPubMedGoogle Scholar
  18. 18.
    Salmon LJ, Refshauge KM, Russell VJ, Roe JP, Linklater J, Pinczewski LA (2006) Gender differences in outcome after anterior cruciate ligament reconstruction with hamstring tendon autograft. Am J Sports Med 34:621–629CrossRefPubMedGoogle Scholar
  19. 19.
    Schwartzberg R, Burkhart B, Lariviere C (2008) Prediction of hamstring tendon autograft diameter and length for anterior cruciate ligament reconstruction. Am J Orthop (Belle Mead NJ). 37:157–159PubMedGoogle Scholar
  20. 20.
    Shelton WR, Fagan BC (2011) Autografts commonly used in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 19:259–264PubMedGoogle Scholar
  21. 21.
    Thomas S, Bhattacharya R, Saltikov JB, Kramer DJ (2013) Influence of anthropometric features on graft diameter in ACL reconstruction. Arch Orthop Trauma Surg 133:215–218CrossRefPubMedGoogle Scholar
  22. 22.
    Treme G, Diduch DR, Billante MJ, Miller MD, Hart JM (2008) Hamstring graft size prediction: a prospective clinical evaluation. Am J Sports Med 36:2204–2209CrossRefPubMedGoogle Scholar
  23. 23.
    Tuman JM, Diduch DR, Rubino LJ, Baumfeld JA, Nguyen HS, Hart JM (2007) Predictors for hamstring graft diameter in anterior cruciate ligament reconstruction. Am J Sports Med 35:1945–1949CrossRefPubMedGoogle Scholar
  24. 24.
    Wolf E (2001) Arthroscopic anterior cruciate ligament reconstruction: trans-Fix technique using doubled semitendinosus and gracilis tendons. In: Chow JCY (ed) Adv Arthrosc. Springer, New York, pp 447–453CrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2015

Authors and Affiliations

  • Rafael Calvo R
    • 1
  • Maximiliano Espinosa I
    • 1
    Email author
  • David Figueroa P
    • 1
  • Rafael Calvo M
    • 1
  1. 1.Facultad de MedicinaClínica Alemana-Universidad del DesarrolloSantiagoChile

Personalised recommendations