Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 23, Issue 6, pp 1799–1807 | Cite as

Does patellofemoral geometry in TKA affect patellar position in mid-flexion?

  • Mo Saffarini
  • Stefano Zaffagnini
  • Simone Bignozzi
  • Francesca Colle
  • Maurilio Marcacci
  • David Dejour



This study aimed to compare the position of the patella at 90° of flexion before and after implantation of two TKA models with identical tibiofemoral geometry but different trochlear and patellar designs. The hypothesis was that the design with the deeper ‘anatomic’ trochlea could produce more natural patellar positions.


Intra-operative navigation data were collected from 22 consecutive cases that received two TKA designs (9 HLS Noetos® and 13 HLS KneeTec®). Both implants were cemented postero-stabilised TKAs with mobile tibial inserts and patellar resurfacing. Operations were guided by a non-image-based system that recorded relative femoral, tibial and patellar positions pre- and post-operatively.


The two groups exhibited little difference in femoral internal–external rotation and anterior–posterior translation during knee flexion. The two groups exhibited significant differences in patellar position at 90° of flexion. Post-operatively, the patella was similarly shifted medially relative to the femur (Noetos 6.9 mm, KneeTec 6.0 mm, n.s.). Patellar flexion was equivalent in native knees (Noetos 18.3°, KneeTec 20.5°, n.s.), but in implanted knees, it was considerably different (Noetos 6.3°, KneeTec 23.5°, p = 0.031).


The present study compared intra-operative navigation data from two patient series that received TKA implants with identical tibiofemoral articular geometry but different patellofemoral designs. The results confirm that tibiofemoral kinematics are unchanged, but that patellar positions at 90° of flexion offer greater mechanical advantage to the quadriceps using the KneeTec than using the Noetos. The findings raise awareness of influence of patellofemoral geometry on mid-flexion kinematics and help surgeons select the most suitable implant for patients with weak quadriceps muscles or with history of patellar instability.

Level of evidence

Comparative study, Level III.


Total knee arthroplasty Postero-stabilised knee Component design Femoral trochlea Patellar kinematics Patellar height Patellar tendon angle 


  1. 1.
    Aglietti P, Buzzi R, Gaudenzi A (1988) Patellofemoral functional results and complications with the posterior stabilized total condylar knee prosthesis. J Arthroplasty 3(1):17–25CrossRefPubMedGoogle Scholar
  2. 2.
    Aglietti P, Insall JN, Walker PS, Trent P (1975) A new patella prosthesis: design and application. Clin Orthop Relat Res 107:175–187CrossRefPubMedGoogle Scholar
  3. 3.
    Akkawi I, Colle F, Bruni D, Raspugli GF, Bignozzi S, Zaffagnini S, Iacono F, Marcacci M (2014) Deep-dished highly congruent tibial insert in CR-TKA does not prevent patellar tendon angle increase and patellar anterior translation. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-2889-5 Google Scholar
  4. 4.
    Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc 15(2):48–56CrossRefPubMedGoogle Scholar
  5. 5.
    Amis AA, Senavongse W, Bull AM (2006) Patellofemoral kinematics during knee flexion–extension: an in vitro study. J Orthop Res 24(12):2201–2211CrossRefPubMedGoogle Scholar
  6. 6.
    Anagnostakos K, Lorbach O, Reiter S, Kohn D (2011) Comparison of five patellar height measurement methods in 90 degrees knee flexion. Int Orthop 35(12):1791–1797CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Baier C, Springorum H-R, Götz J, Schaumburger J, Lüring C, Grifka J, Beckmann J (2013) Comparing navigation-based in vivo knee kinematics pre- and postoperatively between a cruciate-retaining and a cruciate-substituting implant. Int Orthop 37:407–414CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Barink M, Meijerink H, Verdonschot N, Kampen A, Waal Malefijt M (2007) Asymmetrical total knee arthroplasty does not improve patella tracking: a study without patella resurfacing. Knee Surg Sports Traumatol Arthrosc 15:184–191CrossRefPubMedGoogle Scholar
  9. 9.
    Becker R, Karlsson J (2014) The importance of the third knee compartment on outcome following total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(3):475–477CrossRefPubMedGoogle Scholar
  10. 10.
    Belvedere C, Ensini A, Leardini A, Dedda V, Feliciangeli A, Cenni F, Timoncini A, Barbadoro P, Giannini S (2014) Tibio-femoral and patello-femoral joint kinematics during navigated total knee arthroplasty with patellar resurfacing. Knee Surg Sports Traumatol Arthrosc 22(8):1719–1727CrossRefPubMedGoogle Scholar
  11. 11.
    Bicos J, Fulkerson JP, Amis A (2007) Current concepts review: the medial patellofemoral ligament. Am J Sports Med 35(3):484–492CrossRefPubMedGoogle Scholar
  12. 12.
    Bignozzi S, Lopomo N, Zaffagnini S, Martelli S, Bruni D, Marcacci M (2008) Accuracy, reliability, and repeatability of navigation systems in clinical practice. Oper Tech Orthop 18:154–157CrossRefGoogle Scholar
  13. 13.
    Buff HU, Jones LC, Hungerford DS (1988) Experimental determination of forces transmitted through the patello-femoral joint. J Biomech 21(1):17–23CrossRefPubMedGoogle Scholar
  14. 14.
    Bull AM, Katchburian MV, Shih YF, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc 10(3):184–193CrossRefPubMedGoogle Scholar
  15. 15.
    Calliess T, Schado S, Richter BI, Becher C, Ezechieli M, Ostermeier S (2014) Quadriceps force during knee extension in different replacement scenarios with a modular partial prosthesis. Clin Biomech (Bristol, Avon) 29(2):218–222CrossRefGoogle Scholar
  16. 16.
    Casino D, Zaffagnini S, Martelli S, Lopomo N, Bignozzi S, Iacono F, Russo A, Marcacci M (2009) Intraoperative evaluation of total knee replacement: kinematic assessment with a navigation system. Knee Surg Sports Traumatol Arthrosc 17:369–373CrossRefPubMedGoogle Scholar
  17. 17.
    Clarke HD, Fuchs R, Scuderi GR, Mills EL, Scott WN, Insall JN (2006) The influence of femoral component design in the elimination of patellar clunk in posterior-stabilized total knee arthroplasty. J Arthroplasty 21(2):167–171CrossRefPubMedGoogle Scholar
  18. 18.
    Cole GK, Nigg BM, Ronsky JL, Yeadon MR (1993) Application of the joint coordinate system to three-dimensional joint attitude and movement representation: a standardization proposal. J Biomech Eng 115(4A):344–349CrossRefPubMedGoogle Scholar
  19. 19.
    D’Lima DD, Chen PC, Kester MA, Colwell CW Jr (2003) Impact of patellofemoral design on patellofemoral forces and polyethylene stresses. J Bone Joint Surg Am 85-A(Suppl 4):85–93PubMedGoogle Scholar
  20. 20.
    D’Lima DD, Poole C, Chadha H, Hermida JC, Mahar A, Colwell CW Jr (2001) Quadriceps moment arm and quadriceps forces after total knee arthroplasty. Clin Orthop Relat Res 392:213–220CrossRefPubMedGoogle Scholar
  21. 21.
    Dejour D, Ntagiopoulos PG, Saffarini M (2014) Evidence of trochlear dysplasia in femoral component designs. Knee Surg Sports Traumatol Arthrosc 22(11):2599–2607CrossRefPubMedGoogle Scholar
  22. 22.
    Frye BM, Floyd MW, Pham DC, Feldman JJ, Hamlin BR (2012) Effect of femoral component design on patellofemoral crepitance and patella clunk syndrome after posterior-stabilized total knee arthroplasty. J Arthroplasty 27(6):1166–1170CrossRefPubMedGoogle Scholar
  23. 23.
    Goodfellow J, Hungerford DS, Zindel M (1976) Patello-femoral joint mechanics and pathology. 1. Functional anatomy of the patello-femoral joint. J Bone Joint Surg Br 58(3):287–290PubMedGoogle Scholar
  24. 24.
    Grelsamer RP (2001) The sulcus angle and malalignment of the extensor mechanism of the knee. J Bone Joint Surg Br 83(5):772–773CrossRefPubMedGoogle Scholar
  25. 25.
    Healy WL, Wasilewski SA, Takei R, Oberlander M (1995) Patellofemoral complications following total knee arthroplasty. Correlation with implant design and patient risk factors. J Arthroplasty 10(2):197–201CrossRefPubMedGoogle Scholar
  26. 26.
    Hehne HJ (1990) Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop Relat Res 258:73–85PubMedGoogle Scholar
  27. 27.
    Heinert G, Kendoff D, Preiss S, Gehrke T, Sussmann P (2011) Patellofemoral kinematics in mobile-bearing and fixed-bearing posterior stabilised total knee replacements: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 19(6):967–972CrossRefPubMedGoogle Scholar
  28. 28.
    Hozack WJ, Rothman RH, Booth RE Jr, Balderston RA (1989) The patellar clunk syndrome: a complication of posterior stabilized total knee arthroplasty. Clin Orthop Relat Res 241:203–208PubMedGoogle Scholar
  29. 29.
    Hungerford DS, Barry M (1979) Biomechanics of the patellofemoral joint. Clin Orthop Relat Res 144:9–15PubMedGoogle Scholar
  30. 30.
    Indelli PF, Marcucci M, Cariello D, Poli P, Innocenti M (2012) Contemporary femoral designs in total knee arthroplasty: effects on the patello-femoral congruence. Int Orthop 36(6):1167–1173CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 82:1189–1195CrossRefPubMedGoogle Scholar
  32. 32.
    Kaufer H (1979) Patellar biomechanics. Clin Orthop Relat Res 144:51–54PubMedGoogle Scholar
  33. 33.
    Kessler O, Patil S, Colwell CW Jr, D’Lima DD (2008) The effect of femoral component malrotation on patellar biomechanics. J Biomech 41(16):3332–3339CrossRefPubMedGoogle Scholar
  34. 34.
    Laurin CA, Levesque HP, Dussault R, Labelle H, Peides JP (1978) The abnormal lateral patellofemoral angle: a diagnostic roentgenographic sign of recurrent patellar subluxation. J Bone Joint Surg Am 60(1):55–60PubMedGoogle Scholar
  35. 35.
    Long R, Gheduzzi S, Bucher TA, Toms AD, Miles AW (2013) A biomechanical evaluation of hinged total knee replacement prostheses. Proc Inst Mech Eng H 227(8):875–883CrossRefPubMedGoogle Scholar
  36. 36.
    Maloney WJ (2003) Orthopaedic crossfire—larger femoral heads: a triumph of hope over reason! In opposition. J Arthroplasty 18(3 Suppl 1):85–87CrossRefPubMedGoogle Scholar
  37. 37.
    Martelli S, Zaffagnini S, Bignozzi S, Bontempi M, Marcacci M (2006) Validation of a new protocol for computer-assisted evaluation of kinematics of double-bundle ACL reconstruction. Clin Biomech 21:279–287CrossRefGoogle Scholar
  38. 38.
    Mason JJ, Leszko F, Johnson T, Komistek RD (2008) Patellofemoral joint forces. J Biomech 41(11):2337–2348CrossRefPubMedGoogle Scholar
  39. 39.
    Meijerink HJ, Barink M, van Loon CJ, Schwering PJ, Donk RD, Verdonschot N, de Waal Malefijt MC (2007) The trochlea is medialized by total knee arthroplasty: an intraoperative assessment in 61 patients. Acta Orthop 78(1):123–127CrossRefPubMedGoogle Scholar
  40. 40.
    Merchant AC (1988) Classification of patellofemoral disorders. Arthroscopy 4(4):235–240CrossRefPubMedGoogle Scholar
  41. 41.
    Merican AM, Ghosh KM, Baena FR, Deehan DJ, Amis AA (2014) Patellar thickness and lateral retinacular release affects patellofemoral kinematics in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(3):526–533CrossRefPubMedGoogle Scholar
  42. 42.
    Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(9):1479–1487CrossRefPubMedGoogle Scholar
  43. 43.
    Ostermeier S, Buhrmester O, Hurschler C, Stukenborg-Colsman C (2005) Dynamic in vitro measurement of patellar movement after total knee arthroplasty: an in vitro study. BMC Musculoskelet Disord 6:30CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Ostermeier S, Stukenborg-Colsman C (2011) Quadriceps force after TKA with femoral single radius. Acta Orthop 82(3):339–343CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Pandit H, Ward T, Hollinghurst D, Beard DJ, Gill HS, Thomas NP, Murray DW (2005) Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement. J Bone Joint Surg Br 87:940–945CrossRefPubMedGoogle Scholar
  46. 46.
    Patel J, Ries MD, Bozic KJ (2008) Extensor mechanism complications after total knee arthroplasty. Instr Course Lect 57:283–294PubMedGoogle Scholar
  47. 47.
    Pinaroli A, Piedade SR, Servien E, Neyret P (2009) Intraoperative fractures and ligament tears during total knee arthroplasty: a 1795 posterostabilized TKA continuous series. Orthop Traumatol Surg Res 95(3):183–189CrossRefPubMedGoogle Scholar
  48. 48.
    Stagni R, Fantozzi S, Catani F, Leardini A (2010) Can Patellar Tendon Angle reveal sagittal kinematics in total knee arthroplasty? Knee Surg Sports Traumatol Arthrosc 18:949–954CrossRefPubMedGoogle Scholar
  49. 49.
    Star MJ, Kaufman KR, Irby SE, Colwell CW Jr (1996) The effects of patellar thickness on patellofemoral forces after resurfacing. Clin Orthop Relat Res 322:279–284PubMedGoogle Scholar
  50. 50.
    Tanzer M, McLean CA, Laxer E, Casey J, Ahmed AM (2001) Effect of femoral component designs on the contact and tracking characteristics of the unresurfaced patella in total knee arthroplasty. Can J Surg 44(2):127–133PubMedCentralPubMedGoogle Scholar
  51. 51.
    Tecklenburg K, Dejour D, Hoser C, Fink C (2006) Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 14(3):235–240CrossRefPubMedGoogle Scholar
  52. 52.
    van Eijden TM, Kouwenhoven E, Verburg J, Weijs WA (1986) A mathematical model of the patellofemoral joint. J Biomech 19(3):219–229CrossRefPubMedGoogle Scholar
  53. 53.
    Vandenneucker H, Labey L, Victor J, Vander Sloten J, Desloovere K, Bellemans J (2014) Patellofemoral arthroplasty influences tibiofemoral kinematics: the effect of patellar thickness. Knee Surg Sports Traumatol Arthrosc 22(10):2560–2568CrossRefPubMedGoogle Scholar
  54. 54.
    Varadarajan KM, Rubash HE, Li G (2011) Are current total knee arthroplasty implants designed to restore normal trochlear groove anatomy? J Arthroplasty 26(2):274–281CrossRefPubMedGoogle Scholar
  55. 55.
    Ward SR, Terk MR, Powers CM (2005) Influence of patella alta on knee extensor mechanics. J Biomech 38(12):2415–2422CrossRefPubMedGoogle Scholar
  56. 56.
    Zaffagnini S, Bignozzi S, Saffarini M, Colle F, Sharma B, Kinov PS, Marcacci M, Dejour D (2014) Comparison of stability and kinematics of the natural knee versus a PS TKA with a ‘third condyle’. Knee Surg Sports Traumatol Arthrosc 22(8):1778–1785CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2015

Authors and Affiliations

  • Mo Saffarini
    • 1
  • Stefano Zaffagnini
    • 2
  • Simone Bignozzi
    • 2
  • Francesca Colle
    • 2
    • 3
    • 4
  • Maurilio Marcacci
    • 2
    • 3
  • David Dejour
    • 5
  1. 1.Accelerate Innovation Management SAGenevaSwitzerland
  2. 2.Clinica Ortopedica e Traumatologica II, Laboratorio di Biomeccanica ed Innovazione TecnologicaIstituto Ortopedico RizzoliBolognaItaly
  3. 3.Laboratorio di NanoBiotecnologie (NaBi)Istituto Ortopedico RizzoliBolognaItaly
  4. 4.The Biorobotic InstituteScuola Superiore Sant’AnnaPisaItaly
  5. 5.Lyon-Ortho-ClinicClinique de la SauvegardeLyonFrance

Personalised recommendations