Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 24, Issue 9, pp 2811–2817 | Cite as

The effect of knee flexion and rotation on the tibial tuberosity–trochlear groove distance

  • Carlo CamathiasEmail author
  • Geert Pagenstert
  • Ulrich Stutz
  • Alexej Barg
  • Magdalena Müller-Gerbl
  • Andrej M. Nowakowski



The purpose was to measure the effect of flexion and additional rotation of the femur relative to the tibia on the tuberosity–trochlear groove distance (TT–TG) in the same subject in 20 cadaveric knees joint.


In 20 human adult cadavers, formal fixed knees (age: 81.9 years, SD 12.3; 10 female) CT scans were performed in extension and 30° of flexion as well as in neutral, maximal possible internal (IR), and external rotation (ER). On superimposed CT scan images, TT–TG was measured in each position. TT–TG measurements were correlated in all knee positions.


TT–TG in full extension/neutral rotation was 7.8 mm (SD 3.4, range, 2.4–15.3). TT–TG in full extension and IR was significantly lower, and TT–TG in full extension and ER was significantly higher than in neutral rotation (5.4 ± 2.3 vs. 10.9 ± 4.8 mm; P < 0.001). IR and ER varied between 1.0°–7.6° and 0.2°–9.2°, respectively. TT–TG in 30° flexion/neutral rotation was 3.9 mm (SD 1.8, range, 1.3–7.8), which was significantly lower than in full extension and neutral rotation (P < 0.001). TT–TG in 30° flexion and IR was significantly lower, and TT–TG in 30° flexion and ER was significantly higher than values obtained in neutral rotation (2.7 ± 1.2 vs. 6.5 ± 3.4 mm; P < 0.001). IR and ER in 30° flexion varied between 0.6°–10.7° and 1.9°–13.0°, respectively.


Flexion as well as rotation of the knee joint significantly alters the TT–TG. These results may have wider clinical relevance in assessing TT–TG and further decisions based on it.


Tibial tuberosity–trochlear groove distance TT–TG Cadaver Rotation Rotation instability Patellar instability Femoro-patellar instability 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Alemparte J, Ekdahl M, Burnier L, Hernández R, Cardemil A, Cielo R, Danilla S (2007) Patellofemoral evaluation with radiographs and computed tomography scans in 60 knees of asymptomatic subjects. Arthroscopy 23:170–177CrossRefPubMedGoogle Scholar
  2. 2.
    Balcarek P, Jung K, Ammon J, Walde TA, Frosch S, Schüttrumpf JP, Stürmer KM, Frosch K-H (2010) Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle–trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 38:2320–2327CrossRefPubMedGoogle Scholar
  3. 3.
    Beaconsfield T, Pintore E, Maffulli N, Petri GJ (1994) Radiological measurements in patellofemoral disorders. A review. Clin Orthop Relat Res 308:18–28PubMedGoogle Scholar
  4. 4.
    Caplan N, Lees D, Newby M, Ewen A, Jackson R, Gibson ASC, Kader D (2014) Is tibial tuberosity–trochlear groove distance an appropriate measure for the identification of knees with patellar instability? Knee Surg Sports Traumatol Arthrosc 22:2377–2381CrossRefPubMedGoogle Scholar
  5. 5.
    Caton JH, Dejour D (2010) Tibial tubercle osteotomy in patello-femoral instability and in patellar height abnormality. Int Orthop 34:305–309CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chouteau J, Testa R, Viste A, Moyen B (2012) Knee rotational laxity and proprioceptive function 2 years after partial ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 20:762–766CrossRefPubMedGoogle Scholar
  7. 7.
    Dejour H, Walch G, Neyret P, Adeleine P (1990) Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot 76:45–54PubMedGoogle Scholar
  8. 8.
    Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26CrossRefPubMedGoogle Scholar
  9. 9.
    Delgado-Martínez AD, Rodríguez-Merchán EC, Ballesteros R, Luna JD (2000) Reproducibility of patellofemoral CT scan measurements. Int Orthop 24:5–8CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dietrich TJ, Betz M, Pfirrmann CWA, Koch PP, Fucentese SF (2014) End-stage extension of the knee and its influence on tibial tuberosity-trochlear groove distance (TTTG) in asymptomatic volunteers. Knee Surg Sports Traumatol Arthrosc 22:214–218CrossRefPubMedGoogle Scholar
  11. 11.
    Diks MJF, Wymenga AB, Anderson PG (2003) Patients with lateral tracking patella have better pain relief following CT-guided tuberosity transfer than patients with unstable patella. Knee Surg Sports Traumatol Arthrosc 11:384–388CrossRefPubMedGoogle Scholar
  12. 12.
    Dornacher D, Reichel H, Lippacher S (2014) Measurement of tibial tuberosity-trochlear groove distance: evaluation of inter- and intraobserver correlation dependent on the severity of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 22:2382–2387CrossRefPubMedGoogle Scholar
  13. 13.
    Flynn JM, Mackenzie W, Kolstad K, Sandifer E, Jawad AF, Galinat B (2000) Objective evaluation of knee laxity in children. J Pediatr Orthop 20:259–263PubMedGoogle Scholar
  14. 14.
    Goutallier D, Bernageau J, Lecudonnec B (1978) The measurement of the tibial tuberosity. Patella groove distanced technique and results (author’s transl). Rev Chir Orthop Reparatrice Appar Mot 64:423–428PubMedGoogle Scholar
  15. 15.
    Hallen LG, Lindahl O (1966) The “screw-home” movement in the knee-joint. Acta Orthop Scand 37:97–106CrossRefPubMedGoogle Scholar
  16. 16.
    Haughom BD, Souza R, Schairer WW, Li X, Ma CB (2012) Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20:663–670CrossRefPubMedGoogle Scholar
  17. 17.
    Ishii Y, Terajima K, Terashima S, Koga Y (1997) Three-dimensional kinematics of the human knee with intracortical pin fixation. Clin Orthop Relat Res 343:144–150CrossRefPubMedGoogle Scholar
  18. 18.
    Izadpanah K, Weitzel E, Vicari M, Hennig J, Weigel M, Südkamp NP, Niemeyer P (2014) Influence of knee flexion angle and weight bearing on the Tibial Tuberosity-Trochlear Groove (TTTG) distance for evaluation of patellofemoral alignment. Knee Surg Sports Traumatol Arthrosc 22:2655–2661CrossRefPubMedGoogle Scholar
  19. 19.
    Koëter S, Diks MJF, Anderson PG, Wymenga AB (2007) A modified tibial tubercle osteotomy for patellar maltracking: results at two years. J Bone Joint Surg Br 89:180–185CrossRefPubMedGoogle Scholar
  20. 20.
    Last RJ (1950) The popliteus muscle and the lateral meniscus. J Bone Joint Surg Br 32:93–99Google Scholar
  21. 21.
    Lustig S, Servien E, Selmi TAS, Neyret P (2006) Factors affecting reliability of TT–TG measurements before and after medialization: a CT-scan study. Rev Chir Orthop Reparatrice Appar Mot 92:429–436CrossRefPubMedGoogle Scholar
  22. 22.
    Muneta T, Yamamoto H, Ishibashi T, Asahina S, Furuya K (1994) Computerized tomographic analysis of tibial tubercle position in the painful female patellofemoral joint. Am J Sports Med 22:67–71CrossRefPubMedGoogle Scholar
  23. 23.
    Myers CA, Torry MR, Shelburne KB, Giphart JE, LaPrade RF, Woo SL-Y, Steadman JR (2012) In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy. Am J Sports Med 40:170–178CrossRefPubMedGoogle Scholar
  24. 24.
    Nowakowski AM, Kamphausen M, Pagenstert G, Valderrabano V, Müller-Gerbl M (2014) Influence of tibial slope on extension and flexion gaps in total knee arthroplasty: increasing the tibial slope affects both gaps. Int Orthop 38:2071–2077CrossRefPubMedGoogle Scholar
  25. 25.
    Pandit S, Frampton C, Stoddart J, Lynskey T (2011) Magnetic resonance imaging assessment of tibial tuberosity–trochlear groove distance: normal values for males and females. Int Orthop 35:1799–1803CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Piazza SJ, Cavanagh PR (2000) Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J Biomech 33:1029–1034CrossRefPubMedGoogle Scholar
  27. 27.
    Saudan M, Fritschy D (2000) AT-TG (anterior tuberosity-trochlear groove): interobserver variability in CT measurements in subjects with patellar instability. Rev Chir Orthop Reparatrice Appar Mot 86:250–255PubMedGoogle Scholar
  28. 28.
    Schoettle PB, Zanetti M, Seifert B, Pfirrmann CWA, Fucentese SF, Romero J (2006) The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13:26–31CrossRefPubMedGoogle Scholar
  29. 29.
    Senavongse W, Amis AA (2005) The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability: a biomechanical study in vitro. J Bone Joint Surg Br 87:577–582CrossRefPubMedGoogle Scholar
  30. 30.
    Stäubli HU, Birrer S (1990) The popliteus tendon and its fascicles at the popliteal hiatus: gross anatomy and functional arthroscopic evaluation with and without anterior cruciate ligament deficiency. Arthroscopy 6:209–220CrossRefPubMedGoogle Scholar
  31. 31.
    Suganuma J, Ohkoshi T (2011) Association of internal rotation of the knee joint with recurrent subluxation of the lateral meniscus. Arthroscopy 27:1071–1078CrossRefPubMedGoogle Scholar
  32. 32.
    Wilcox JJ, Snow BJ, Aoki SK, Hung M, Burks RT (2012) Does landmark selection affect the reliability of tibial tubercle–trochlear groove measurements using MRI? Clin Orthop Relat Res 470:2253–2260CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2015

Authors and Affiliations

  • Carlo Camathias
    • 1
    Email author
  • Geert Pagenstert
    • 2
  • Ulrich Stutz
    • 3
  • Alexej Barg
    • 2
  • Magdalena Müller-Gerbl
    • 3
  • Andrej M. Nowakowski
    • 2
    • 3
  1. 1.Paediatric Orthopaedic DepartmentUniversity Children’s Hospital Basle (UKBB)BaselSwitzerland
  2. 2.Orthopaedic DepartmentUniversity of Basel, University Hospital BaselBaselSwitzerland
  3. 3.Institute of AnatomyUniversity of BaselBaselSwitzerland

Personalised recommendations