Optimized cartilage visualization using 7-T sodium (23Na) imaging after patella dislocation

  • Harald K. WidhalmEmail author
  • Sebastian Apprich
  • Goetz H. Welsch
  • Stefan Zbyn
  • Patrick Sadoghi
  • György Vekszler
  • Martina Hamböck
  • Michael Weber
  • Stefan Hajdu
  • Siegfried Trattnig



Retropatellar cartilage lesions often occur in the course of recurrent patella dislocation. Aim of this study was to develop a more detailed method for examining cartilage tissue, in order to reduce patient discomfort and time of care.


For detailed diagnosing, a 7-T MRI of the knee joint and patella was performed in nine patients, with mean age of 26.4 years, after patella dislocation to measure the cartilage content in three different regions of interest of the patella. Axial sodium (23Na) images were derived from an optimized 3D GRE sequence on a 7-T MR scanner. Morphological cartilage grading was performed, and sodium signal-to-noise ratio (SNR) values were calculated. Mean global sodium values and SNR were compared between patients and volunteers.


Two out of nine patients showed a maximum cartilage defect of International Cartilage Repair Society (ICRS) grade 3, three of grade 2, three of  grade 1, and one patient showed no cartilage defect. The mean SNR in sodium images for cartilage was 13.4 ± 2.5 in patients and 14.6 ± 3.7 in volunteers (n.s.). A significant negative correlation between age and global sodium SNR for cartilage was found in the medial facet (R = −0.512; R 2 = 0.26; p = 0.030). Mixed-model ANOVA yielded a marked decrease of the sodium SNR, with increasing grade of cartilage lesions (p < 0.001).


Utilization of the 23Na MR imaging will make earlier detection of alterations to the patella cartilage after dislocation possible and will help prevent subsequent disease due to start adequate therapy earlier in the rehabilitation process.

Level of evidence



7 T Magnetic resonance imaging Sodium Cartilage Glycosaminoglycans Patella dislocation 



We thank Claudia Kronnerwetter and her colleagues for performing the MRI exminations at the MR Center, Department of Radiology, Medical University of Vienna, Austria.

Conflict of interest

The authors declare that they have no potential conflicts of interest, related to the presented work.


  1. 1.
    Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558CrossRefPubMedGoogle Scholar
  2. 2.
    Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R (2006) Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19:781–821CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69PubMedGoogle Scholar
  4. 4.
    Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45:36–41CrossRefPubMedGoogle Scholar
  5. 5.
    Eckstein F, Burstein D, Link TM (2006) Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 19:822–854CrossRefPubMedGoogle Scholar
  6. 6.
    Farr J, Covell DJ, Lattermann C (2012) Cartilage lesions in patellofemoral dislocations: incidents/locations/when to treat. Sports Med Arthrosc 20:181–186CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Herneth AM, Ringl H, Memarsadeghi M, Fueger B, Friedrich KM, Krestan C, Imhof H (2007) Diffusion weighted imaging in osteoradiology. Top Magn Reson Imaging 18:203–212CrossRefPubMedGoogle Scholar
  8. 8.
    Lammentausta E, Kiviranta P, Töyräs J, Hyttinen MM, Kiviranta I, Nieminen MT, Jurvelin JS (2007) Quantitative MRI of parallel changes of articular cartilage and underlying trabecular bone in degeneration. Osteoarthr Cartil 15:1149–1157CrossRefPubMedGoogle Scholar
  9. 9.
    Larson RL, Cabaud HE, Slocum DB, James SL, Keenan T, Hutchinson T (1978) The patellar compression syndrome: surgical treatment by lateral retinacular release. Clin Orthop Relat Res 134:158–167PubMedGoogle Scholar
  10. 10.
    Lesperance LM, Gray ML, Burstein D (1992) Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res 10:1–13CrossRefPubMedGoogle Scholar
  11. 11.
    Li X, Benjamin Ma C, Link TM, Castillo D-D, Blumenkrantz G, Lozano J, Carballido-Gamio J, Ries M, Majumdar S (2007) In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthr Cartil 15:789–797CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Madelin G, Babb J, Xia D, Chang G, Krasnokutsky S, Abramson SB, Jerschow A, Regatte RR (2013) Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology 268:481–491CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mamisch TC, Hughes T, Mosher TJ, Mueller C, Trattnig S, Boesch C, Welsch GH (2012) T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol 41:287–292CrossRefPubMedGoogle Scholar
  14. 14.
    Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368CrossRefPubMedGoogle Scholar
  15. 15.
    Nomura E, Inoue M (2005) Second-look arthroscopy of cartilage changes of the patellofemoral joint, especially the patella, following acute and recurrent patellar dislocation. Osteoarthr Cartil 13:1029–1036CrossRefPubMedGoogle Scholar
  16. 16.
    Nomura E, Inoue M, Kurimura M (2003) Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy 19:717–721CrossRefPubMedGoogle Scholar
  17. 17.
    Reddy R, Insko EK, Noyszewski EA, Dandora R, Kneeland JB, Leigh JS (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39:697–701CrossRefPubMedGoogle Scholar
  18. 18.
    Redziniak DE, Diduch DR, Mihalko WM, Fulkerson JP, Novicoff WM, Sheibani-Rad S, Saleh KJ (2009) Patellar instability. J Bone Joint Surg Am 91:2264–2275PubMedGoogle Scholar
  19. 19.
    Regalado G, Lintula H, Kokki H, Kröger H, Väätäinen U, Eskelinen M (2014) Six-year outcome after non-surgical versus surgical treatment of acute primary patellar dislocation in adolescents: a prospective randomized trial. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-014-3271-3 Google Scholar
  20. 20.
    Scharf W, Schabus R, Wagner M (1985) Results of Slocum–Larson patellar bridling. Unfallchirurgie 11:204–208CrossRefPubMedGoogle Scholar
  21. 21.
    Shapiro EM, Borthakur A, Dandora R, Kriss A, Leigh JS, Reddy R (2000) Sodium visibility and quantitation in intact bovine articular cartilage using high field 23Na MRI and MRS. J Magn Reson 142:24–31CrossRefPubMedGoogle Scholar
  22. 22.
    Siebold R, Karidakis G, Fernandez F (2014) Clinical outcome after medial patellofemoral ligament reconstruction and autologous chondrocyte implantation following recurrent patella dislocation. Knee Surg Sports Traumatol Arthrosc 22:2477–2483CrossRefPubMedGoogle Scholar
  23. 23.
    Sillanpää PJ, Mattila VM, Mäenpää H, Kiuru M, Visuri T, Pihlajamäki H (2009) Treatment with and without initial stabilizing surgery for primary traumatic patellar dislocation. A prospective randomized study. J Bone Joint Surg Am 91:263–273CrossRefPubMedGoogle Scholar
  24. 24.
    Staroswiecki E, Bangerter NK, Gurney PT, Grafendorfer T, Gold GE, Hargreaves BA (2010) In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T. J Magn Reson Imaging 32:446–451CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Trattnig S, Welsch GH, Juras V, Szomolanyi P, Mayerhoefer ME, Stelzeneder D, Mamisch TC, Bieri O, Scheffler K, Zbýn S (2010) 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 257:175–184CrossRefPubMedGoogle Scholar
  26. 26.
    von Engelhardt LV, Raddatz M, Bouillon B, Spahn G, Dàvid A, Haage P, Lichtinger TK (2010) How reliable is MRI in diagnosing cartilaginous lesions in patients with first and recurrent lateral patellar dislocations? BMC Musculoskelet Disord 11:149CrossRefGoogle Scholar
  27. 27.
    Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, Regatte RR (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 30:606–614CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Welsch GH, Mamisch TC, Quirbach S, Zak L, Marlovits S, Trattnig S (2009) Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19:1253–1262CrossRefPubMedGoogle Scholar
  29. 29.
    Welsch GH, Apprich S, Zbýn S, Mamisch TC, Mlynarik V, Scheffler K, Bieri O, Trattnig S (2011) Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol 21:1136–1143CrossRefPubMedGoogle Scholar
  30. 30.
    Welsch GH, Juras V, Szomolanyi P, Mamisch TC, Baer P, Kronnerwetter C, Blanke M, Fujita H, Trattnig S (2012) Magnetic resonance imaging of the knee at 3 and 7 Tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols. Eur Radiol 22:1852–1859CrossRefPubMedGoogle Scholar
  31. 31.
    Zheng X, Kang K, Li T, Lu B, Dong J, Gao S (2014) Surgical versus non-surgical management for primary patellar dislocations: an up-to-date meta-analysis. Eur J Orthop Surg Traumatol. doi: 10.1007/s00590-013-1400-1 PubMedCentralGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2014

Authors and Affiliations

  • Harald K. Widhalm
    • 1
    Email author
  • Sebastian Apprich
    • 2
  • Goetz H. Welsch
    • 2
    • 3
  • Stefan Zbyn
    • 2
  • Patrick Sadoghi
    • 4
  • György Vekszler
    • 1
  • Martina Hamböck
    • 1
  • Michael Weber
    • 2
  • Stefan Hajdu
    • 1
  • Siegfried Trattnig
    • 2
  1. 1.Department of Traumatology, Center for Joints and CartilageMedical University of ViennaViennaAustria
  2. 2.Department of Radiology, MR CenterMedical University of ViennaViennaAustria
  3. 3.Department of Trauma SurgeryUniversity Hospital of ErlangenErlangenGermany
  4. 4.Department of Orthopaedic SurgeryMedical University of GrazGrazAustria

Personalised recommendations