Is posterior tibial slope associated with noncontact anterior cruciate ligament injury?

  • Chao Zeng
  • Tuo Yang
  • Song Wu
  • Shu-guang Gao
  • Hui Li
  • Zhen-han Deng
  • Yi Zhang
  • Guang-hua LeiEmail author



This study aimed to: (1) examine whether the association between posterior tibial slope and noncontact ACL injury exists in Chinese population; (2) compare the reliability and consistency of the three methods (longitudinal axis, posterior and anterior tibial cortex axis) in lateral radiograph.


Case–control study contained 146 patients in total (73 noncontact ACL injuries and 73 meniscus injuries, matched for age and gender), which were verified by arthroscopy, MRI and physical examination.


For the total population and the male subgroup, the mean posterior tibial slope of the ACL-injured group was significantly higher than that of the control group (P < 0.001). In addition, the longitudinal axis method exhibited the highest inter-rater (0.898) and intrarater reliability (0.928), whereas the anterior tibial cortex was the most variable (inter-rater reliability, 0.805; intrarater reliability, 0.824). The anterior tibial cortex method produced largest posterior tibial slope measurements (13.8 ± 3.3 for injury group; 11.6 ± 2.7 for control group), while the posterior tibial cortex method was the smallest (9.1 ± 3.1 for injury group; 7.2 ± 2.6 for control group). All three methods were not affected by age, sex, height, weight and BMI (n.s.).


The results of this study suggested that an increased posterior tibial slope was associated with the risk of noncontact ACL injury in Chinese population. Meanwhile, the longitudinal axis method is recommended for measuring posterior tibial slope in lateral radiograph in future studies. Posterior tibial slope measured by longitudinal axis method may be used as predictor of ACL injury.

Level of evidence

Case–control study, Level III.


Anterior cruciate ligament Risk factor Tibial slope Meta-analysis 



This work was supported by Hunan Provincial Innovation Foundation For Postgraduate (CX2014A005), the Fundamental Research Funds for the Central Universities of Central South University, the National Natural Science Foundation of China (No. 81201420, 81272034, 81472130), the Provincial Science Foundation of Hunan (No. 14JJ3032), the Scientific Research Project of the Development and Reform Commission of Hunan Province [(2013)1199], the Scientific Research Project of Science and Technology Office of Hunan Province (2013SK2018), the Doctoral Scientific Fund Project of the Ministry of Education of China (20120162110036).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med 33:524–530CrossRefPubMedGoogle Scholar
  2. 2.
    Alentorn-Geli E, Mendiguchía J, Samuelsson K, Musahl V, Karlsson J, Cugat R, Myer GD (2014) Prevention of anterior cruciate ligament injuries in sports. Part I: systematic review of risk factors in male athletes. Knee Surg Sports Traumatol Arthrosc 22:3–15CrossRefPubMedGoogle Scholar
  3. 3.
    Alentom-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lázaro-Haro C, Cuqat R (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 17:705–729CrossRefGoogle Scholar
  4. 4.
    Bisson LJ, Gurske-DePerio J (2010) Axial and sagittal knee geometry as a risk factor for noncontact anterior cruciate ligament tear: a case–control study. Arthroscopy 26:901–906CrossRefPubMedGoogle Scholar
  5. 5.
    Brandon ML, Haynes PT, Bonamo JR, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899CrossRefPubMedGoogle Scholar
  6. 6.
    Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A (1996) Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot 82:195–200PubMedGoogle Scholar
  7. 7.
    Chhabra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH (2006) Anatomic, radiographic, biomechanical, and kinematic evaluation of the anterior cruciate ligament and its two functional bundles. J Bone Joint Surg Am 88:2–10CrossRefPubMedGoogle Scholar
  8. 8.
    Chung SC, Chan WL, Wong SH (2011) Lower limb alignment in anterior cruciate ligament-deficient versus -intact knees. J Orthop Surg (Hong Kong) 19:303–308Google Scholar
  9. 9.
    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76:745–749PubMedGoogle Scholar
  10. 10.
    Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S (2014) The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 21:134–145CrossRefGoogle Scholar
  11. 11.
    Giffin JR, Shannon FJ (2007) The role of the high tibial osteotomy in the unstable knee. Sports Med Arthrosc 15:23–31CrossRefPubMedGoogle Scholar
  12. 12.
    Gregory CF, Maish DR (1997) Knee ligaments injury: epidemiology, mechanism, diagnosis and natural history. In: Stoller DW (ed) Magnetic resonance imaging in orthopedic and sports medicine, 2nd edn. Lippincott-Raven, Philadelphia, pp 621–623Google Scholar
  13. 13.
    Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD (2010) Shallow medial tibial plateau and steep medial and lateral tibial slopes. Am J Sports Med 38:54–62CrossRefPubMedGoogle Scholar
  14. 14.
    Ha TP, Li KC, Beaulier CF, Bergman G, Ch’en IY, Eller DJ, Cheung LP, Herfkens RJ (1998) Anterior cruciate ligament injury: fast spin-echo MR imaging with arthroscopic correlation in 217 examinations. AJR Am J Roentgenol 170:1215–1219CrossRefPubMedGoogle Scholar
  15. 15.
    Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Dose posterior tibial slope influence knee functionality in the anterior cruciate ligament-deficient and anterior cruciate ligament-reconstructed knee? Arthroscopy 26:1496–1502CrossRefPubMedGoogle Scholar
  16. 16.
    Hohmann E, Bryant A, Reabum P, Tetsworth K (2011) Is there a correlation between posterior tibial slope and non-contact anterior cruciate ligament injuries? Knee Surg Sports Traumatol Arthrosc Suppl 1:S109–S114CrossRefGoogle Scholar
  17. 17.
    Hudek R, Fuchs B, Regenfelder F, Koch PP (2011) Is noncontact ACL injury associated with the posterior and meniscal slope? Clin Orthop Relat Res 469:2377–2384PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Khan MS, Seon JK, Song EK (2011) Risk factors for anterior cruciate ligament injury: assessment of tibial plateau anatomic variables on conventional MRI using a new combined method. Int Orthop 35:1251–1256PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kocher MS, DiCanzio J, Zurakowski D, Micheli LJ (2011) Diagnostic performance of clinical examination and selective magnetic resonance imaging in the evaluation of intra-articular knee disorders in children and adolescents. Am J Sports Med 29:292–296Google Scholar
  20. 20.
    Lee K, Siegel MJ, Lau DM, Hildebolt CF, Matava MJ (1999) Anterior cruciate ligament tears: mR imaging-based diagnosis in a pediatric population. Radiology 213:697–704CrossRefPubMedGoogle Scholar
  21. 21.
    Li Y, Hong L, Feng H, Wang Q, Zhang H, Song G (2014) Are failures of anterior cruciate ligament reconstruction associated with steep posterior tibial slopes? A case control study. Chin Med J (Engl) 127:2649–2653Google Scholar
  22. 22.
    Li Y, Hong L, Feng H, Wang Q, Zhang J, Song G, Chen X, Zhuo H (2014) Posterior tibial slope influences static anterior tibial translation in anterior cruciate ligament reconstruction: a minimum 2-year follow-up study. Am J Sports Med 42:927–933CrossRefPubMedGoogle Scholar
  23. 23.
    Lipps DB, Wilson AM, Ashton-Miller JA, Wojtys EM (2012) Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging. Am J Sports Med 40:2731–2736PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Liu W, Maitland ME (2003) Influence of anthropometric and mechanical variations on functional instability in the ACL deficient knee. Ann Biomed Eng 31:1153–1161CrossRefPubMedGoogle Scholar
  25. 25.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35:1756–1769CrossRefPubMedGoogle Scholar
  26. 26.
    Major NM, Beard LN Jr, Helms CA (2003) Accuracy of MR imaging of the knee in adolescents. Am J Roentgenol 180:17–19CrossRefGoogle Scholar
  27. 27.
    Mann CJ (2003) Observational research methods. Research design II: cohort, cross sectional, and case–control studies. Emerg Med J 20:54–60PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Marouane H, Shirazi-Adl A, Adouni M, Hashemi J (2014) Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression. J Biomech 47:1353–1359CrossRefPubMedGoogle Scholar
  29. 29.
    McDermott MJ, Bathgate B, Gillingham BL, Hennrikus WL (1998) Correlation of MRI and arthroscopic diagnosis of knee pathology in children and adolescents. J Pediatr Orthop 18:675–678CrossRefPubMedGoogle Scholar
  30. 30.
    McLean SG, Oh YK, Palmer ML, Lucey SM, Lucarelli DG, Ashton-Miller JA, Wojtys EM (2011) The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Joint Surg Am 93:1310–1317CrossRefPubMedGoogle Scholar
  31. 31.
    Mink JH, Levy T, Crues JV 3rd (1988) Tears of the anterior cruciate ligament and menisci of the knee: MR imaging evaluation. Radiology 167:769–774CrossRefPubMedGoogle Scholar
  32. 32.
    Nelitz M, Seitz AM, Bauer J, Reichel H, Ignatius A, Dürselen L (2013) Increasing posterior tibial slope does not raise anterior cruciate ligament strain but decreases tibial rotation ability. Clin Biomech 28:285–290CrossRefGoogle Scholar
  33. 33.
    O’Connor J, Shercliff TL, Biden E, Goodfellow JW (1989) The geometry of the knee in the sagittal plane. Proc Inst Mech Eng H 203:223–233CrossRefPubMedGoogle Scholar
  34. 34.
    Sadoghi P, von Keudell A, Vavken P (2012) Effectiveness of anterior cruciate ligament injury prevention training programs. J Bone Joint Surg Am 94:769–776CrossRefPubMedGoogle Scholar
  35. 35.
    Schub DL, Altahawi F, Meisel AF, Winalski C, Parker RD, Saluan PM (2012) Accuracy of 3-tesla magnetic resonance imaging for the diagnosis of intra-articular knee injuries in children and teenagers. J Pediatr Orthop 32:765–769CrossRefPubMedGoogle Scholar
  36. 36.
    Senisik S, Ozuqüz C, Erqün M, Yüksel O, Taskiran E, Isleqen C, Ertat A (2011) Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players. J Sports Sci Med 10:763–767PubMedCentralPubMedGoogle Scholar
  37. 37.
    Shao Q, MacLeod TD, Manal K, Buchanan TS (2011) Estimation of ligament loading and anterior tibial translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial slope using EMG-driven approach. Ann Biomed Eng 39:110–121PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Shelburne KB, Kim HJ, Sterett WI, Pandy MG (2011) Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 29:223–231CrossRefPubMedGoogle Scholar
  39. 39.
    Simon RA, Everharta JS, Nagaraja HN, Chaudhari AM (2010) A case–control study of anterior cruciate ligament volume, tibial plateau slopes and intercondylar notch dimensions in ACL injured knees. J Biomech 43:1702–1707PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Sonnery-Cottet B, Archbold P, Cucurulo T, Fayard JM, Bortolletto J, Thaunat M, Prost T, Chambat P (2011) The influence of the tibial slope and the size of the intercondylar notch on rupture of the anterior cruciate ligament. J Bone Joint Surg Br 93:1475–1478CrossRefPubMedGoogle Scholar
  41. 41.
    Stanitski CL (1998) Correlation of arthroscopic and clinical examinations with magnetic resonance imaging findings of injured knee in children and adolescents. Am J Sports Med 26:2–6PubMedGoogle Scholar
  42. 42.
    Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? Knee Surg Sports Traumatol Arthrosc 16:112–117CrossRefPubMedGoogle Scholar
  43. 43.
    Terauchi M, Hatayama K, Yanagisawa S, Saito K, Takagishi K (2011) Sagittal alignment of the knee and its relationship to noncontact anterior cruciate ligament injuries. Am J Sports Med 39:1090–1094CrossRefPubMedGoogle Scholar
  44. 44.
    Todd MS, Lalliss S, Garcia E, Deberardino TM, Cameron KL (2010) The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med 38:63–67CrossRefPubMedGoogle Scholar
  45. 45.
    Utzschneider S, Goettinger M, Weber P, Horng A, Glaser C, Jansson V, Müller PE (2011) Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc 19:1643–1648CrossRefPubMedGoogle Scholar
  46. 46.
    Vyas S, van Eck CF, Vyas N, Fu FH, Otsuka NY (2011) Increased medial tibial slope in teenage pediatric population with open physes and anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 19:372–377PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Webb JM, Salmon LJ, Leclerc E, Pinczewski LA, Roe JP (2013) Posterior Tibial Slope and Further Anterior Cruciate Ligament Injuries in the Anterior Cruciate Ligament-Reconstructed Patient. Am J Sports Med 41:2800–2804CrossRefPubMedGoogle Scholar
  48. 48.
    Wordeman SC, Quatman CE, Kaeding CC, Hewett TE (2012) In vivo evidence for tibial plateau slope as a risk factor for anterior cruciate ligament injury a systematic review and metaanalysis. Am J Sports Med 40:1673–1681PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Zeng C, Cheng L, Wei J, Gao SG, Yang TB, Luo W, Li YS, Xu M, Lei GH (2012) The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 22:53–65CrossRefPubMedGoogle Scholar
  50. 50.
    Zobel MS, Borrello JA, Siegel MJ, Stemart NR (1994) Pediatric knee MR imaging pattern of injuries in the immature skeleton. Radiology 190:397–401CrossRefPubMedGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2014

Authors and Affiliations

  • Chao Zeng
    • 1
  • Tuo Yang
    • 1
  • Song Wu
    • 2
  • Shu-guang Gao
    • 1
  • Hui Li
    • 1
  • Zhen-han Deng
    • 1
  • Yi Zhang
    • 1
  • Guang-hua Lei
    • 1
    Email author
  1. 1.Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Department of Orthopaedics, Third-Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations