Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 23, Issue 1, pp 310–322 | Cite as

Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation

  • Gonzalo Samitier
  • Eduard Alentorn-Geli
  • Dean C. Taylor
  • Brian Rill
  • Terrence Lock
  • Vasilius Moutzouros
  • Patricia KolowichEmail author
Knee

Abstract

Purpose

To provide a systematic review of the literature regarding five topics in meniscal allograft transplantation: graft biology, shrinkage, extrusion, sizing, and fixation.

Methods

A systematic literature search was conducted using the PubMed (MEDLINE), ScienceDirect, and EBSCO-CINAHL databases. Articles were classified only in one topic, but information contained could be reported into other topics. Information was classified according to type of study (animal, in vitro human, and in vivo human) and level of evidence (for in vivo human studies).

Results

Sixty-two studies were finally included: 30 biology, 3 graft shrinkage, 11 graft extrusion, 17 graft size, and 6 graft fixation (some studies were categorized in more than one topic). These studies corresponded to 22 animal studies, 22 in vitro human studies, and 23 in vivo human studies (7 level II, 10 level III, and 6 level IV).

Conclusions

The principal conclusions were as follows: (a) Donor cells decrease after MAT and grafts are repopulated with host cells form synovium; (b) graft preservation alters collagen network (deep freezing) and causes cell apoptosis with loss of viable cells (cryopreservation); (c) graft shrinkage occurs mainly in lyophilized and gamma-irradiated grafts (less with cryopreservation); (d) graft extrusion is common but has no clinical/functional implications; (e) overall, MRI is not superior to plain radiograph for graft sizing; (f) graft width size matching is more important than length size matching; (g) height appears to be the most important factor influencing meniscal size; (h) bone fixation better restores contact mechanics than suture fixation, but there are no differences for pullout strength or functional results; and (i) suture fixation has more risk of graft extrusion compared to bone fixation.

Level of evidence

Systematic review of level II–IV studies, Level IV.

Keywords

Meniscal allograft transplantation Graft biology Graft shrinkage Graft extrusion Graft sizing Graft fixation 

References

  1. 1.
    Aaltonen S, Karjalainen H, Heinonen A, Parkkari J, Kujala UM (2007) Prevention of sports injuries: systematic review of randomized controlled trials. Arch Intern Med 167:1585–1592PubMedCrossRefGoogle Scholar
  2. 2.
    Abat F, Gelber PE, Erquicia JI, Pelfort X, Gonzalez-Lucena G, Monllau JC (2012) Suture-only fixation technique leads to a higher degree of extrusion than bony fixation in meniscal allograft transplantation. Am J Sports Med 40:1591–1596PubMedCrossRefGoogle Scholar
  3. 3.
    Abat F, Gelber PE, Erquicia JI, Tey M, Gonzalez-Lucena G, Monllau JC (2013) Prospective comparative study between two different fixation techniques in meniscal allograft transplantation. Knee Surg Sports Traumatol Arthrosc 21:1516–1522PubMedCrossRefGoogle Scholar
  4. 4.
    Alhalki MM, Howell SM, Hull ML (1999) How three methods for fixing a medial meniscal autograft affect tibial contact mechanics. J Sports Med 27:320–328Google Scholar
  5. 5.
    Arnoczky SP, DiCarlo EF, O’Brien SJ, Warren RF (1992) Cellular repopulation of deep-frozen meniscal autografts: an experimental study in the dog. Arthroscopy 8:428–436PubMedCrossRefGoogle Scholar
  6. 6.
    Berhouet J, Marty F, Rosset P, Favard L (2013) Meniscus matching: evaluation of direct anatomical, indirect radiographic, and photographic methods in 10 cadaver knees. Orthop Traumatol Surg Res 99:291–297PubMedCrossRefGoogle Scholar
  7. 7.
    Burke DL, Ahmed AH, Miller J (1978) A biomechanical study of partial and total medial meniscectomy of the knee. Trans Orthop Res Soc 3:91Google Scholar
  8. 8.
    Bursac P, York A, Kuznia P, Brown LM, Arnoczky SP (2009) Influence of donor age on the biomechanical and biochemical properties of human meniscal allograft. Am J Sports Med 37:884–889PubMedCrossRefGoogle Scholar
  9. 9.
    Canham W, Stanish W (1986) A study of the biological behavior of the meniscus as a transplant in the medial compartment of a dog’s knee. Am J Sports Med 14:376–379PubMedCrossRefGoogle Scholar
  10. 10.
    Carter T, Economopoulos KJ (2013) Meniscal allograft shrinkage. MRI Eval J Knee Surg 26:167–171Google Scholar
  11. 11.
    Chen MI, Branch TP, Hutton WC (1996) Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 12:174–181PubMedCrossRefGoogle Scholar
  12. 12.
    De Coninck T, Huysse W, Verdonk R, Verstraete K, Verdonk P (2013) Open versus arthroscopic meniscus allograft transplantation: magnetic resonance imaging study of meniscal radial displacement. Arthroscopy 29:514–521PubMedCrossRefGoogle Scholar
  13. 13.
    Debeer P, Decorte R, Delvaux S, Bellemans J (2000) DNA analysis of a transplanted cryopreserved meniscal allograft. Arthroscopy 16:71–75PubMedCrossRefGoogle Scholar
  14. 14.
    Dienst M, Greis PE, Ellis BJ, Bachus KN, Burks RT (2007) Effect of lateral meniscal allograft sizing on contact mechanics of the lateral tibial plateau: an experimental study in human cadaveric knee joints. Am J Sports Med 35:34–42PubMedCrossRefGoogle Scholar
  15. 15.
    Donahue TLH, Hull ML, Howell SM (2006) New algorithm for selecting meniscal allografts that best match the size and shape of the damaged meniscus. J Orthop Res 24:1535–1543PubMedCrossRefGoogle Scholar
  16. 16.
    Elsner JJ, Portnoy S, Guilak F, Shterling A, Linder-Ganz E (2010) MRI-based characterization of bone anatomy in the human knee for size matching of a medial meniscal implant. J Biomech Eng 132:101008PubMedCrossRefGoogle Scholar
  17. 17.
    Fairbank TJ (1948) Knee joint changes after meniscectomy. J Bone Joint Surg Br 30:664–670Google Scholar
  18. 18.
    Gelber PE, Gonzalez G, Lloreta JL, Reina F, Cáceres E, Monllau JC (2008) Freezing causes changes in the meniscus collagen net: a new ultrastructural meniscus disarray scale. Knee Surg Sports Traumatol Arthrosc 16:353–359PubMedCrossRefGoogle Scholar
  19. 19.
    Gelber PE, Gonzalez G, Torres R, Garcia N, Cáceres E, Monllau JC (2009) Cryopreservation does not alter the ultrastructure of the meniscus. Knee Surg Sports Traumatol Arthrosc 17:639–644PubMedCrossRefGoogle Scholar
  20. 20.
    Ha JK, Shim JC, Kim DW, Lee YS, Ra HJ, Kim JG (2010) Relationship between meniscal extrusion and various clinical findings after meniscus allograft transplantation. Am J Sports Med 38:2448–2455PubMedCrossRefGoogle Scholar
  21. 21.
    Hunt S, Kaplan K, Ishak C, Kummer FJ, Meislin R (2008) Bone plug versus suture fixation of the posterior horn in medial meniscal allograft transplantation. A biomechanical study. Bull NYU Hosp Jt Dis 66:22–26PubMedGoogle Scholar
  22. 22.
    Hunter SA, Noyes FR, Haridas B, Levy MS, Butler DL (2003) Effects of matrix stabilization when using glutaraldehyde on the material properties of porcine meniscus. J Biomed Mater Res 67A:1245–1254CrossRefGoogle Scholar
  23. 23.
    Hunter SA, Rapoport HS, Connolly JM, Alferiev I, Fulmer J, Murti BH, Herfat M, Noyes FR, Butler DL, Levy RJ (2010) Biomechanical and biologic effects of meniscus stabilization using triglycidyl amine. J Biomed Mater Res 93A:235–242Google Scholar
  24. 24.
    Jackson DW, McDevitt CA, SImon TM, Arnoczky SP, Atwell EA, Silvino NJ (1992) Meniscal transplantation using fresh and cryopreserved allografts. An experimental study in goats. Am J Sports Med 20:644–656PubMedCrossRefGoogle Scholar
  25. 25.
    Jackson DW, SImon TM (1993) Assessment of donor cell survival in fresh allografts (ligament, tendon, and meniscus) using DNA probe analysis in a goat model. Iowa Orthop J 13:107–114PubMedCentralPubMedGoogle Scholar
  26. 26.
    Jackson DW, Whelan J, SImon TM (1993) Cell survival after transplantation of fresh meniscal allografts. DNA probe analysis in a goat model. Am J Sports Med 21:540–550PubMedCrossRefGoogle Scholar
  27. 27.
    Jang SH, Kim JG, Ha JG, Shim JC (2011) Reducing the size of the meniscal allograft decreases the percentage of extrusion after meniscal allograft transplantation. Arthroscopy 27:914–922PubMedCrossRefGoogle Scholar
  28. 28.
    Jiang D, Zhao LH, Tian M, Zhang JY, Yu JK (2012) Meniscus transplantation using treated xenogeneic meniscal tissue: viability and chondroprotection study in rabbits. Arthroscopy 28:1147–1159PubMedCrossRefGoogle Scholar
  29. 29.
    Koh YG, Moon HK, Kim YC, Park YS, Jo SB, Kwon SK (2012) Comparison of medial and lateral meniscal transplantation with regard to extrusion of the allograft, and its correlation with clinical outcome. J Bone Joint Surg Br 94:190–193PubMedCrossRefGoogle Scholar
  30. 30.
    Lee BS, Chung JW, Kim JM, Cho WJ, Kim KA, Bin S (2012) Morphologic changes in fresh-frozen meniscus allografts over 1 year. A prospective magnetic resonance imaging study on the width and thickness of transplants. Am J Sports Med 40:1384–1391PubMedCrossRefGoogle Scholar
  31. 31.
    Lee BS, Chung JW, Kim JM, Kim KA, Bin SI (2012) Width is a more important predictor in graft extrusion than length using plain radiographic sizing in lateral meniscal transplantation. Knee Surg Sports Traumatol Arthrosc 20:179–186PubMedCrossRefGoogle Scholar
  32. 32.
    Lee DH, Kim JM, Lee BS, Kim KA, Bin S (2012) Greater axial trough obliquity increases the risk of graft extrusion in lateral meniscus allograft transplantation. Am J Sports Med 40:1597–1605PubMedCrossRefGoogle Scholar
  33. 33.
    Lee DH, Kim SB, Kim TH, Cha EJ, Bin SI (2010) Midterm outcomes after meniscal allograft transplantation: comparison of cases with extrusion versus without extrusion. Am J Sports Med 38:247–254PubMedCrossRefGoogle Scholar
  34. 34.
    Lee DH, Kim TH, Lee SH, Kim CW, Kim JM, Bin S (2008) Evaluation of meniscus allograft transplantation with serial magnetic resonance imaging during the first postoperative year: focus on graft extrusion. Arthroscopy 24:1115–1121PubMedCrossRefGoogle Scholar
  35. 35.
    Lewis PB, Williams JM, Hallab N, Virdi A, Yanke A, Cole BJ (2008) Multiple freeze-thaw cycled meniscal allograft tissue: a biomechanical, biochemical and histologic analysis. J Orthop Res 26:49–55PubMedCrossRefGoogle Scholar
  36. 36.
    Martinek V, Usas A, Pelinkovic D, Robbins P, Fu FH, Huard J (2002) Genetic engineering of meniscal allografts. Tissue Eng 8:107–117PubMedCrossRefGoogle Scholar
  37. 37.
    Matava MJ (2007) Meniscal allograft transplantation. A systematic review. Clin Orthop Relat Res 455:142–157PubMedCrossRefGoogle Scholar
  38. 38.
    McConkey M, Lyon C, Bennett DL, Schoch B, Britton C, Amendola A, Wolf B (2012) Radiographic sizing for meniscal transplantation using 3-D CT reconstruction. J Knee Surg 25:221–226PubMedGoogle Scholar
  39. 39.
    McDermott ID, Sharifi F, Bull AMJ, Gupte CM, Thomas RW, Amis AA (2004) An anatomical study of meniscal allograft sizing. Knee Surg Sports Traumatol Arthrosc 12:130–135PubMedCrossRefGoogle Scholar
  40. 40.
    McNickle AG, Wang VM, Shewman EF, Cole BJ, Williams JM (2009) Performance of a sterile meniscal allograft in an ovine model. Clin Orthop Relat Res 467:1868–1876PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Mikic ZD, Brankov MZ, Tubic MV, Lazetic AB (1993) Allograft meniscus transplantation in the dog. Acta Orthop Scand 64:329–332PubMedCrossRefGoogle Scholar
  42. 42.
    Mikic ZD, Brankov MZ, Tubic MV, Lazetic AB (1997) Transplantation of fresh-frozen menisci: an experimental study in dogs. Arthroscopy 13:579–583PubMedCrossRefGoogle Scholar
  43. 43.
    Milachowski KA, Weismeier K, Wirth CJ (1989) Homologous meniscus transplantation. Experimental and clinical results. Int Orthop 13:1–11Google Scholar
  44. 44.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 18:264–269Google Scholar
  45. 45.
    Ochi M, Ikuta Y, Ishida O, Akiyama M (1993) Cellular and humoral immune responses after fresh meniscal allografts in mice. A preliminary report. Arch Orthop Trauma Surg 112:163–166PubMedCrossRefGoogle Scholar
  46. 46.
    Ochi M, Ishida O, Daisaku H, Ikuta Y, Akiyama M (1995) Immune response to fresh meniscal allografts in mice. J Surg Res 58:478–484PubMedCrossRefGoogle Scholar
  47. 47.
    Ochi M, Sumen Y, Jitsuiki J, Ikuta Y (1995) Allogeneic deep frozen meniscal graft for repair of osteochondral defects in the knee joint. Arch Orthop Trauma Surg 114:260–266PubMedCrossRefGoogle Scholar
  48. 48.
    Pollard ME, Kang Q, Berg EE (1995) Radiographic sizing for meniscal transplantation. Arthroscopy 11:684–687PubMedCrossRefGoogle Scholar
  49. 49.
    Prodromos CC, Joyce BT, Keller BL, Murphy BJ, Shi K (2007) Magnetic resonance imaging measurement of the contralateral normal meniscus is a more accurate method of determining meniscal allograft size than radiographic measurement of the recipient tibial plateau. Arthroscopy 23(1174–1179):e1171Google Scholar
  50. 50.
    Reckers LJ, Fagundes DJ, Cohen M, Raymundo JLP, Moreira MB, Paiva VC (2005) Effects of different preservation temperatures and periods menisci cellularity in rabbits. Acta Cir Bras 20:428–433PubMedCrossRefGoogle Scholar
  51. 51.
    Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz T, Warren RF (2000) Histological analysis of human meniscal allograft. A preliminary report. J Bone Joint Surg Am 82:1071–1082PubMedGoogle Scholar
  52. 52.
    Rodkey WG (2000) Basic biology of the meniscus and response to injury. Instr Course Lect 49:189–193PubMedGoogle Scholar
  53. 53.
    Seedhom BB, Hargreaves DJ (1979) Transmission of load in the knee joint with special reference to the role of the menisci: part II: experimental results, discussions, and conclusions. Eng Med Biol 8:220–228Google Scholar
  54. 54.
    Shaffer BL, Kennedy S, Klimkiewicz JJ, Yao L (2000) Preoperative sizing of meniscal allografts in meniscus transplantation. Am J Sports Med 28:524–533PubMedGoogle Scholar
  55. 55.
    Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716PubMedCrossRefGoogle Scholar
  56. 56.
    Stone KR, Freyer A, Turek T, Walgenbach AW, Wadhwa S, Crues J (2007) Meniscal sizing based on gender, height, and weight. Arthroscopy 23:503–508PubMedCrossRefGoogle Scholar
  57. 57.
    Stone KR, Stoller DW, Irving SG, Elmquist C, Gildengorin G (1994) 3D MRI volume sizing of knee meniscus cartilage. Arthroscopy 10:641–644PubMedCrossRefGoogle Scholar
  58. 58.
    Van Thiel GS, Verma N, Yanke A, Basu S, Farr J, Cole B (2009) Meniscal allograft size can be predicted by height, weight, and gender. Arthroscopy 25:722–727PubMedCrossRefGoogle Scholar
  59. 59.
    Verdonk P, Depaepe Y, Desmyter S, De Muynck M, Almqvist KF, Verstraete K, Verdonk R (2004) Normal and transplanted lateral knee menisci: evaluation of extrusion using magnetic resonance imaging and ultrasound. Knee Surg Sports Traumatol Arthrosc 12:411–419PubMedCrossRefGoogle Scholar
  60. 60.
    Villalba R, Peña J, Navarro P, Luque E, Jimena I, Romero A, Gómez-Villagrán JL (2012) Cryopreservation increases apoptosis in human menisci. Knee Surg Sports Traumatol Arthrosc 20:298–303PubMedCrossRefGoogle Scholar
  61. 61.
    Wada Y (1993) Meniscal transplantation using fresh and cryopreserved allografts. An experimental study in the genetically defined rat. J Jpn Orthop Assoc 67:677–683Google Scholar
  62. 62.
    Wada Y, Amiel M, Harwood F, Moriya H, Amiel D (1998) Architectural remodeling in deep frozen meniscal allografts after total meniscectomy. Arthroscopy 14:250–257PubMedCrossRefGoogle Scholar
  63. 63.
    Wilmes P, Anagnostakos K, Weth C, Kohn D, Seil R (2008) The reproducibility of radiographic measurement of medial meniscus horn position. Arthroscopy 24:660–668PubMedCrossRefGoogle Scholar
  64. 64.
    Wilmes P, Pape D, Kohn D, Seil R (2007) The reproducibility of radiographic measurement of lateral meniscus horn position. Arthroscopy 23:1079–1086PubMedCrossRefGoogle Scholar
  65. 65.
    Wisnewski PJ, Powers DL, Kennedy JM (1988) Glutaraldehyde-cross-linked meniscal allografts: mechanical properties. J Invest Surg 1:259–266PubMedCrossRefGoogle Scholar
  66. 66.
    Xue C, Zhang L, Shuang F, Zhang Y, Zhang Y, Luo D, Kang X, Wang X, Hou S, Zhong H (2013) Robust revascularization, despite impaired VEGF production, after meniscus allograft transplantation in rabbits. Am J Sports Med 41:2668–2675PubMedCrossRefGoogle Scholar
  67. 67.
    Yahia L, Zukor D (1994) Irradiated meniscal allotransplants of rabbits: study of the mechanical properties at six months postoperation. Acta Orthop Belg 60:210–215PubMedGoogle Scholar
  68. 68.
    Yamazaki K, Tachibana Y (2003) Vascularized synovial flap promoting regeneration of the cryopreserved meniscal allograft: experimental study in rabbits. J Orthop Sci 8:62–68PubMedCrossRefGoogle Scholar
  69. 69.
    Yoon J, Kim T, Lee Y, Jang H, Kim Y, Yang J (2011) Transpatellar approach in lateral meniscal allograft transplantation using the keyhole method: can we prevent graft extrusion? Knee Surg Sports Traumatol Arthrosc 19:214–217PubMedCrossRefGoogle Scholar
  70. 70.
    Yoon J, Kim T, Lim H, Lim H, Yang J (2011) Is radiographic measurement of bony landmarks reliable for lateral meniscal sizing? Am J Sports Med 39:582–589PubMedCrossRefGoogle Scholar
  71. 71.
    Yoon J, Kim T, Wang J, Yun H, Lim H, Yang J (2011) Importance of independent measurement of width and length of lateral meniscus during preoperative sizing for meniscal allograft transplantation. Am J Sports Med 39:1541–1547PubMedCrossRefGoogle Scholar

Copyright information

© European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2014

Authors and Affiliations

  • Gonzalo Samitier
    • 1
  • Eduard Alentorn-Geli
    • 2
  • Dean C. Taylor
    • 2
  • Brian Rill
    • 1
  • Terrence Lock
    • 1
  • Vasilius Moutzouros
    • 1
  • Patricia Kolowich
    • 1
    Email author
  1. 1.Department of Orthopaedics, Sports Medicine Division, Henry Ford Health SystemWilliam Clay Ford Center for Athletic MedicineDetroitUSA
  2. 2.Duke Sports MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations