Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 23, Issue 11, pp 3343–3353 | Cite as

Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs

  • N. Arnout
  • L. Vanlommel
  • J. Vanlommel
  • J. P. Luyckx
  • L. Labey
  • B. Innocenti
  • J. Victor
  • J. Bellemans



Posterior cruciate ligament (PCL)-substituting total knee arthroplasty (TKA) designs were introduced to avoid paradoxical roll forward of the femur and to optimize knee kinematics. The aim of this in vitro study was to investigate post-cam function and contact mechanics and relate it to knee kinematics during squatting in eight contemporary posterior-stabilized TKA designs.


All prostheses were fixed on custom-designed metal fixtures and mounted in a knee rig and five sequential-loaded squats were performed between 30° and 130° of flexion. Contact pressure and contact area were measured using pressure-sensitive Tekscan sensors on the posterior face of the post. Kinematics was recorded with reflective markers and infrared light-capturing cameras.


The post-cam mechanisms analyzed in this study are very variable in terms of design features. This leads to large variations in terms of the flexion angle at which the post and cam engage maximal contact force, contact pressure and contact area. We found that more functional post-cam mechanisms, which engage at lower flexion angle and have a similar behavior as normal PCL function, generally show more normal rollback and tibial rotation at the expense of higher contact forces and pressures. All designs show high contact forces. A positive correlation was found between contact force and initial contact angle.


Post-cam contact mechanics and kinematics were documented in a standardized setting. Post-cam contact mechanics are correlated with post-cam function. Outcomes of this study can help to develop more functional designs in future. Nevertheless, a compromise will always be made between functional requirements and risk of failure. We assume that more normal knee kinematics leads to more patient satisfaction because of better mobility. Understanding of the post-cam mechanism, and knowing how this system really works, is maybe the clue in further development of new total knee designs.


In vitro study Posterior-stabilized TKA Post-cam failure Kinematics 


  1. 1.
    Argenson JN, Scuderi GR, Komistek RD et al (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38(2):277–284CrossRefPubMedGoogle Scholar
  2. 2.
    Arnout N, Vandenneucker H, Bellemans J (2011) Posterior dislocation in TKR, a price for deep flexion? Knee Surg Sports Traumatol Arthrosc 19(6):911–913CrossRefPubMedGoogle Scholar
  3. 3.
    Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and substituting knee arthroplasties. J Arthroplasty 12(3):297–304CrossRefPubMedGoogle Scholar
  4. 4.
    Blackburne JS, Peel TE (1977) A new method of measuring patellar height. J Bone Joint Surg Br 59-B:241–242Google Scholar
  5. 5.
    Callaghan JJ, O’Rourke MR, Goetz DD et al (2002) Tibial post impingement in posterior stabilized total knee arthroplasty. CORR 404:83–88CrossRefGoogle Scholar
  6. 6.
    Chandran N, Amirouche F, Gonzalez MH et al (2003) Optimization of the posterior stabilized tibial post for greater femoral roll back after TKA, a finite element analysis. Int Orthop 33(3):687–693CrossRefGoogle Scholar
  7. 7.
    Christen B, Heesterbeek P, Wymymga A, Wehrli U (2007) Posterior cruciate ligament balancing in total knee replacement: the quantitative relationship between tightness of the flexion gap and tibial translation. JBJS Br 89(8):1046–1050PubMedGoogle Scholar
  8. 8.
    Clarke HD, Math KR, Scuderi GR (2004) Polyethylene post failure in posterior stabilized total knee arthroplasty. J Arthroplasty 19(5):652–657CrossRefPubMedGoogle Scholar
  9. 9.
    Fitzpatrick CK, Clary CW, Cyr AJ et al (2013) Mechanics of post-cam engagement during simulated dynamic activity. J Orthop Res 31(9):1438–1446PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144CrossRefPubMedGoogle Scholar
  11. 11.
    Hamai S, Miura H, Matsuda S et al (2010) Contact stresses at the anterior aspect of the tibial post in posterior-stabilized total knee replacement. JBJS 92-A:1765–1773CrossRefGoogle Scholar
  12. 12.
    Harris ML, Morberg P, Bruce WJM, Walsh WR (1999) An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J Biomech 32(9):951–958CrossRefPubMedGoogle Scholar
  13. 13.
    Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight-bearing knee kinematics using ‘interventional’ MRI. J Biomech 38(2):269–276CrossRefPubMedGoogle Scholar
  14. 14.
    Jung KA, Lee SC, Hwang SH, Kim SM (2009) Fractured polyethylene tibial post in a posterior-stabilized knee prosthesis presenting as a floating palpable mass. J Knee Surg 22(4):374–376CrossRefPubMedGoogle Scholar
  15. 15.
    Li G, Most E, Otterberg E et al (2002) Biomechanics of posterior-substituting total knee arthroplasty: an in vitro study. Clin Orthop Relat Res 404:214–225CrossRefPubMedGoogle Scholar
  16. 16.
    Li G, Zayontz S, Most E et al (2001) Cruciate retaining and cruciate substituting total knee arthroplasty. An in vitro comparison of the kinematics under muscle loads. J Arthropl 16(8 Suppl 1):150–156CrossRefGoogle Scholar
  17. 17.
    Lombardi AV, Mallory TH, Vaughn BK et al (1993) Dislocation following primary posterior-stabilized total knee arthroplasty. J Arthroplasty 8:633–639CrossRefPubMedGoogle Scholar
  18. 18.
    Luyckx L, Luyckx T, Bellemans J, Victor J (2010) Iliotibial band traction syndrome in guided motion TKA: a new clinical entity in TKA. Acta Orthop Belg 76(4):507–512PubMedGoogle Scholar
  19. 19.
    Nakayama K, Matsuda S, Miura H et al (2005) Contact stress at the post cam mechanism in posterior stabilized total knee arthroplasty. JBJS Br 87(4):483–488PubMedGoogle Scholar
  20. 20.
    O’Rourke MR, Callaghan JJ, Goetz DD et al (2002) Osteolysis associated with a cemented modular posterior cruciate substituting total knee design: five to eight -year follow-up. JBJS 84:1362–1371Google Scholar
  21. 21.
    Puloski SK, Mc Calden RW, Mac Donald SJ et al (2001) Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. JBJS 83:390–397Google Scholar
  22. 22.
    Sharkey PF, Hozack WJ, Booth RE et al (1992) Posterior dislocation of total knee arthroplasty. Clin Orhop Rel Res 278:128–133Google Scholar
  23. 23.
    Shimizu N, Tomita T, Yamazaki T et al (2011) The effect of weight-bearing condition on kinematics in a high flexion, posterior stabilized total knee design. J Arthroplasty 26(7):1031–1037CrossRefPubMedGoogle Scholar
  24. 24.
    Stiehl JB, Komistek RD, Dennis DA et al (1995) Fluoroscopic analysis of kinematics after posterior cruciate retaining knee arthroplasty. J Bone Joint Surg Br 77(6):884–889PubMedGoogle Scholar
  25. 25.
    Toutoungi DE, Lu TW, Leardini A et al (2000) Cruciate ligament forces in the human knee during rehabilitation exercises. Clin Biomech 15(3):176–187CrossRefGoogle Scholar
  26. 26.
    van Duren BH, Pandit H, Price M et al (2012) Bicruciate substituting total knee replacement: how effective are the added kinematic constraints in vivo? Knee Surg Sports Traumatol Arthrosc 20(10):2002–2010CrossRefPubMedGoogle Scholar
  27. 27.
    Verra WC, van den Boom LG, Jacobs W, Clement DJ, Wymenga AA, Nelissen RG (2013) Retention versus sacrifice of the posterior cruciate ligament in total knee replacement for treatment of osteoarthritis and rheumatoid arthritis, Cochrane reviewGoogle Scholar
  28. 28.
    Victor J, Kyle JP, Mueller BS et al (2010) In vivo kinematics after a cruciate-substituting TKA. CORR 468:807–814CrossRefGoogle Scholar
  29. 29.
    Victor J, Vanglabbeek F, Vander Sloten J, Parizel PM, Somville J, Bellemans J (2009) An experimental model for kinematic analysis of the knee. J Bone Joint Surg Am 91:150–163CrossRefPubMedGoogle Scholar
  30. 30.
    Victor J, Van Doninck D, Labey L, Innocnti B, Parizel PM, Bellemans J (2009) How precise can bony landmarks be determined on a CT scan of the knee. Knee 16(5):358–365CrossRefPubMedGoogle Scholar
  31. 31.
    Wasielewski RC (2002) The causes of insert backside wear in total knee arthroplasty. CORR 404:232–246CrossRefGoogle Scholar
  32. 32.
    Waslewski GL, Marson BM, Benjamin JB (1998) Early incapacitating instability of posterior cruciate ligament-retaining in total knee arthroplasty. J Arthroplasty 13(7):763–767CrossRefPubMedGoogle Scholar
  33. 33.
    Wilson DR, Apreleva MV, Eichler MJ, Harrold FR (2003) Accuracy and repeatability of a pressure measurement system in the patellofemoral joint. J Biomech 36(12):1909–1915CrossRefPubMedGoogle Scholar
  34. 34.
    Wirz D, Becker R, Li SF, Friederich NF, Müller W (2002) Validation of the Tekscan system for statistic and dynamic pressure measurements of the human femorotibial joint. Biomed Tech (Berl) 47(7–8):195–201CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • N. Arnout
    • 1
  • L. Vanlommel
    • 2
  • J. Vanlommel
    • 2
  • J. P. Luyckx
    • 3
  • L. Labey
    • 3
    • 4
  • B. Innocenti
    • 3
    • 5
  • J. Victor
    • 1
  • J. Bellemans
    • 2
    • 6
  1. 1.Orthopedie en TraumatologieUniversity Hospital GhentGhentBelgium
  2. 2.University Hospitals LeuvenGhentBelgium
  3. 3.European Centre for Knee ResearchHeverleeBelgium
  4. 4.Department of Mechanical Engineering, Biomechanics SectionCatholic University of LeuvenLouvainBelgium
  5. 5.BEAMS Department, École Polytechnique de BruxellesUniversité Libre de BruxellesBrusselsBelgium
  6. 6.ZOLGenkBelgium

Personalised recommendations