Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 22, Issue 12, pp 2995–3002 | Cite as

Rotational alignment of the distal femur: anthropometric measurements with CT-based patient-specific instruments planning show high variability of the posterior condylar angle

  • Emmanuel Thienpont
  • Pierre-Emmanuel Schwab
  • Frederic Paternostre
  • Peter Koch
Knee

Abstract

Purpose

Finding the anatomical landmarks used for correct femoral axial alignment can be difficult. The posterior condylar line (PCL) is probably the easiest to find during surgery. The aim of this study was to analyse whether a predetermined fixed angle referencing of the PCL could help find the surgical epicondylar axis (SEA) and this based on a large CT database with enough Caucasian diversity to be representable.

Methods

A total of 2,637 CT scans and 3D reconstructions from patients on four continents, executed for preoperative planning and creation of patient-specific instrumentation, were used to perform anthropometric measurements and to measure the posterior condylar angle (PCA) between the surgical epicondylar angle and the PCL.

Results

The mean (SD) PCA was 4° (1.4°) of external rotation. A significant correlation was found between more external rotation of the SEA and more proximal varus of the tibia or more distal valgus of the femur. For 59 % of the study population, 4° external rotation from the PCL would be the right amount of axial rotation to align the femoral component in line with the SEA. Nine per cent needs less, and 32 % needs more than 4° of axial rotation. On 105 (4 %) CT-based 3D models, external rotation between 7° and 11° was measured and 77 (73 %) of those cases were in varus or neutral alignment. In 132 patients, bilateral measurements were available and 94 (71 %) had rotation within 1° of the opposite side. This last finding underlines that there is even an intra-individual difference in distal femoral anatomy that can range from 1° to 5°.

Conclusions

This study was performed on a very large anthropometric CT and 3D models database and showed that there is a 41 % risk of malalignment if a fixed PCA referenced of the PCL is used in total knee arthroplasty. The clinical importance of this study is the observation that femoral axial anatomy is individual and also that it is determined by the tibial anatomy. A group of patients needs more than the average external rotation because they have more distal femoral valgus with dysplastic condyles or more proximal tibial varus with a bigger medial condyle.

Level of evidence

III.

Keywords

Total knee arthroplasty Femoral rotation Alignment CT scan Patient-specific instruments 

References

  1. 1.
    Akagi M, Matsuse Y, Mata T, Asada Y, Horiguchi M, Lida H, Nakamura T (1999) Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res 366:155–163PubMedCrossRefGoogle Scholar
  2. 2.
    Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT (1993) The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop Relat Res 287:170–177PubMedGoogle Scholar
  3. 3.
    Arima J, Whiteside LA, McCarthy DS, White SE (1995) Femoral rotational alignment, based on the antero-posterior axis, in total knee arthroplasty in a valgus knee. A technical note. J Bone Jt Surg Am 77:1331–1334Google Scholar
  4. 4.
    Asada S, Akagi M, Matsushita T, Hashimoto K, Mori S, Hamanishi C (2012) Effects of cartilage remnants of the posterior femoral condyles on femoral component rotation in varus osteoarthritis. Knee 19:185–190PubMedCrossRefGoogle Scholar
  5. 5.
    Asano T, Akagi M, Nakamura T (2005) The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis. J Arthroplasty 20:1060–1067PubMedCrossRefGoogle Scholar
  6. 6.
    Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47PubMedGoogle Scholar
  7. 7.
    Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153PubMedCrossRefGoogle Scholar
  8. 8.
    Cheng T, Zhao S, Peng X, Zhang X (2012) Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials? Knee Surg Sports Traumatol Arthrosc 20:1307–1322PubMedCrossRefGoogle Scholar
  9. 9.
    Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118PubMedCrossRefGoogle Scholar
  10. 10.
    Clarke HD (2012) Changes in posterior condylar offset after total knee arthroplasty cannot be determined by radiographic measurements alone. J Arthroplasty 27:1155–1158PubMedCrossRefGoogle Scholar
  11. 11.
    Classen T, Landgraeber S, Wegner A, Müller R, von Knoch M (2011) Femoral component rotation in patients with leg axis deviation. Knee Surg Sports Traumatol Arthrosc 19:1077–1081PubMedCrossRefGoogle Scholar
  12. 12.
    D’Lima DD, Chen PC, Colwell CW Jr (2001) Polyethylene contact stresses, articular congruity, and knee alignment. Clin Orthop Relat Res 392:232–238PubMedCrossRefGoogle Scholar
  13. 13.
    Fehring TK (2000) Rotational malalignment of the femoral component in total knee arthroplasty. Clin Orthop Relat Res 380:72–79PubMedCrossRefGoogle Scholar
  14. 14.
    Fujii T, Kondo M, Tomari K, Kadoya Y, Tanaka Y (2012) Posterior condylar cartilage may distort rotational alignment of the femoral component based on posterior condylar axis in total knee arthroplasty. Surg Radiol Anat 34:633–638PubMedCrossRefGoogle Scholar
  15. 15.
    Griffin FM, Insall JN, Scuderi GR (1998) The posterior condylar angle in osteoarthritic knees. J Arthroplasty 13:812–815PubMedCrossRefGoogle Scholar
  16. 16.
    Griffin FM, Math K, Scuderi GR, Insall JN, Poilvache PL (2000) Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees. J Arthroplasty 15:354–359PubMedCrossRefGoogle Scholar
  17. 17.
    Hanada H, Whiteside LA, Steiger J, Dyer P, Naito M (2007) Bone landmarks are more reliable than tensioned gaps in TKA component alignment. Clin Orthop Relat Res 462:137–142PubMedCrossRefGoogle Scholar
  18. 18.
    Hungerford DS, Kenna RV (1983) Preliminary experience with a total knee prosthesis with porous coating used without cement. Clin Orthop Relat Res 176:95–107PubMedGoogle Scholar
  19. 19.
    Ishii Y, Noguchi H, Takeda M, Ishii H, Toyabe S (2011) Changes in the medial and lateral posterior condylar offset in total knee arthroplasty. J Arthroplasty 26:255–259PubMedCrossRefGoogle Scholar
  20. 20.
    Chon JG, Sun DH, Jung JY, Kim TI, Kim TI, Jang SW (2011) Rotational alignment of femoral component for minimal medial collateral release in knee arthroplasty. Knee Surg Relat Res 23:153–156PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Jenny JY, Boeri C (2004) Low reproducibility of the intra-operative measurement of the transepicondylar axis during total knee replacement. Acta Orthop Scand 75:74–77PubMedCrossRefGoogle Scholar
  22. 22.
    Kinzel V, Ledger M, Shakespeare D (2005) Can the epicondylar axis be defined accurately in total knee arthroplasty? Knee 12:293–296PubMedCrossRefGoogle Scholar
  23. 23.
    Kobayashi T, Suzuki M, Sasho T, Nakagawa K, Tsuneizumi Y, Takahashi K (2012) Lateral laxity in flexion increases the postoperative flexion angle in cruciate-retaining total knee arthroplasty. J Arthroplasty 27:260–265PubMedCrossRefGoogle Scholar
  24. 24.
    Kobayashi H, Akamatsu Y, Kumagai K, Kusayama Y, Ishigatsubo R, Muramatsu S, Saito T (2014) The surgical epicondylar axis is a consistent reference of the distal femur in the coronal and axial planes. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-2867-y Google Scholar
  25. 25.
    Laskin RS (1995) Flexion space configuration in total knee arthroplasty. J Arthroplasty 10:657–660PubMedCrossRefGoogle Scholar
  26. 26.
    Lustig S, Lavoie F, Selmi TAS, Servien E, Neyret P (2008) Relationship between the surgical epicondylar axis and the articular surface of the distal femur: an anatomic study. Knee Surg Sports Traumatol Arthrosc 16:674–682PubMedCrossRefGoogle Scholar
  27. 27.
    Luyckx T, Zambianchi F, Catani F, Bellemans J, Victor J (2013) Coronal alignment is a predictor of the rotational geometry of the distal femur in the osteo-arthritic knee. Knee Surg Sports Traumatol Arthrosc 10:2331–2337CrossRefGoogle Scholar
  28. 28.
    Mantas JP, Bloebaum RD, Kedros JB, Hofmann AA (1992) Implications of reference axes used for rotational alignment of the femoral component in primary and revision knee arthroplasty. J Arthroplasty 7:531–535PubMedCrossRefGoogle Scholar
  29. 29.
    Michaut M, Beaufils P, Galaud B, Abadiea P, Boisrenoult P, Fallet L (2008) Rotation fémorale par navigation sur la base d’un scanner pré-opératoire dans l’arthroplastie totale de genou: a propos de 70 cas. Rev Chir Orthop Reparatrice Appar Mot 94:580–584PubMedCrossRefGoogle Scholar
  30. 30.
    Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE (2001) Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res 392:38–45PubMedCrossRefGoogle Scholar
  31. 31.
    Newbern DG, Faris PM, Ritter MA, Keating EM, Meding JB, Berend ME (2006) A clinical comparison of patellar tracking using the transepicondylar axis and the posterior condylar axis. J Arthroplasty 21:1141–1146PubMedCrossRefGoogle Scholar
  32. 32.
    Ng VY, DeClaire JH, Berend KR, Gullick BC, Lombardi AV Jr (2012) Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res 470:99–107PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL (2012) Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res 470:895–902PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Olcott CW, Scott RD (1999) The Ranawat Award. Femoral component rotation during total knee arthroplasty. Clin Orthop Relat Res 367:39–42PubMedGoogle Scholar
  35. 35.
    Parratte S, Blanc G, Boussemart T, Ollivier M, Le Corroller T, Argenson JN (2013) Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc 21:2213–2219PubMedCrossRefGoogle Scholar
  36. 36.
    Paternostre F, Schwab PE, Thienpont E (2014) The combined Whiteside’s and posterior condylar line as a reliable reference to describe axial distal femoral anatomy in patient-specific instrument planning. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-2836-5 Google Scholar
  37. 37.
    Paternostre F, Schwab PR, Thienpont E (2013) The difference between weight-bearing and non-weight-bearing alignment in patient-specific instrumentation planning. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-013-2687-5 PubMedGoogle Scholar
  38. 38.
    Poilvache PL, Insall JN, Scuderi GR, Font-Rodriguez DE (1996) Rotational landmarks and sizing the distal femur in total knee arthroplasty. Clin Orthop Relat Res 331:35–46PubMedCrossRefGoogle Scholar
  39. 39.
    Ries MD, Salehi A, Laskin RS, Bourne RB, Rand JA, Gustilo RB (1998) Can rotational congruity be achieved in both flexion and extension when the femoral component is externally rotated in total knee arthroplasty? Knee 5:37–41CrossRefGoogle Scholar
  40. 40.
    Seo JG, Moon YW, Lim JS, Park SJ, Kim SM (2012) Mechanical axis-derived femoral component rotation in extramedullary total knee arthroplasty: a comparison between femoral transverse axis and transepicondylar axis. Knee Surg Sports Traumatol Arthrosc 20:538–545PubMedCrossRefGoogle Scholar
  41. 41.
    Siston RA, Patel JJ, Goodman SB, Delp SL, Giori NJ (2005) The variability of femoral rotational alignment in total knee arthroplasty. J Bone Jt Surg Am 87:2276–2280CrossRefGoogle Scholar
  42. 42.
    Suter T, Zanetti M, Schmid M, Romero J (2006) Reproducibility of measurement of femoral component rotation after total knee arthroplasty using computer tomography. J Arthroplasty 21:744–748PubMedCrossRefGoogle Scholar
  43. 43.
    Tashiro Y, Uemura M, Matsuda S, Okazaki K, Kawahara S, Hashizume M, Iwamoto Y (2012) Articular cartilage of the posterior condyle can affect rotational alignment in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20:1463–1469PubMedCrossRefGoogle Scholar
  44. 44.
    Thaunat M, Beaufils P (2010) The posterior femoral condyles: a potential donor site for mosaic-like osteochondral autograft? Arthroscopy 26:1503–1509PubMedCrossRefGoogle Scholar
  45. 45.
    der Linden-van Van, der Zwaag HMJ, Bos J, van der Heide HJL, Nelissen RG (2011) A computed tomography based study on rotational alignment accuracy of the femoral component in total knee arthroplasty using computer-assisted orthopaedic surgery. Int Orthop 35:845–850CrossRefGoogle Scholar
  46. 46.
    der Linden-van Van, der Zwaag HM, Valstar ER, van der Molen AJ, Nelissen RG (2008) Transepicondylar axis accuracy in computer assisted knee surgery: a comparison of the CT-based measured axis versus the CAS-determined axis. Comput Aided Surg 13:200–206CrossRefGoogle Scholar
  47. 47.
    Victor J, Van Doninck D, Labey L, Van Glabbeek F, Parizel P, Bellemans J (2009) A common reference frame for describing rotational alignment of the distal femur. J Bone Jt Surg Br 91:683–690CrossRefGoogle Scholar
  48. 48.
    Victor J, Van Doninck D, Labey L, Innocenti B, Parizei PM, Bellemans J (2009) How precise can bony landmarks be determined on a CT scan of the knee? Knee 16:358–365PubMedCrossRefGoogle Scholar
  49. 49.
    Victor J (2009) Rotational alignment of the distal femur: a literature review. Orthop Traumatol Surg Res 95:365–372PubMedCrossRefGoogle Scholar
  50. 50.
    Won YY, Cui WQ, Baek MH, Yun TB, Han SH (2007) An additional reference axis for determining rotational alignment of the femoral component in total knee arthroplasty. J Arthroplasty 22:1049–1053PubMedCrossRefGoogle Scholar
  51. 51.
    Yoshino N, Takai S, Ohtsuki Y, Hirasawa Y (2001) Computed tomography measurements of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty 16:493–497PubMedCrossRefGoogle Scholar
  52. 52.
    Yoshioka Y, Siu D, Cooke TD (1987) The anatomy and functional axes of the femur. J Bone Jt Surg Am 69:873–880Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emmanuel Thienpont
    • 1
  • Pierre-Emmanuel Schwab
    • 1
  • Frederic Paternostre
    • 1
  • Peter Koch
    • 2
  1. 1.Department of Orthopaedic SurgeryUniversity Hospital Saint Luc-UCLBrusselsBelgium
  2. 2.Department of Orthopaedic SurgeryKantonsspital WinterthurWinterthurSwitzerland

Personalised recommendations