Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 23, Issue 8, pp 2145–2150 | Cite as

Is the native ACL insertion site “completely restored” using an individualized approach to single-bundle ACL-R?

  • K. K. Middleton
  • B. Muller
  • P. H. Araujo
  • Y. Fujimaki
  • S. J. Rabuck
  • J. J. Irrgang
  • S. Tashman
  • F. H. Fu
Knee

Abstract

Purpose

The goal of individualized anatomic anterior cruciate ligament reconstruction (ACL-R) is to reproduce each patient’s native insertion site as closely as possible. The amount of the native insertion site that is recreated by the tunnel aperture area is currently unknown, as are the implications of the degree of coverage. As such, the goals of this study are to determine whether individualized anatomic ACL-R techniques can maximally fill the native insertion site and to attempt to establish a crude measure to evaluate the percentage of reconstructed area as a first step towards elucidating the implications of complete footprint restoration.

Methods

This is a prospective pilot study of 45 patients who underwent primary single-bundle anatomic ACL-R from May 2011 to April 2012. Length and width of the native insertion site were measured intraoperatively. Using published guidelines, reconstruction technique and graft choice were determined to maximize the percentage of reconstructed area. Native femoral and tibial insertion site area and femoral tunnel aperture area were calculated using the formula for area of an ellipse. On the tibial side, tunnel aperture area was calculated with respect to drill diameter and drill guide angle. Percentage of reconstructed area was calculated by dividing total tunnel aperture area by the native insertion site area.

Results

The mean areas for the native femoral and tibial insertion sites were 83 ± 20 and 125 ± 20 mm2, respectively. The mean tunnel aperture area for the femoral side was 65 ± 17, and 86 ± 17 mm2 for the tibial tunnel aperture area. On average, percentage of reconstructed area was 79 ± 13 % for the femoral side, and 70 ± 12 % for the tibial side.

Conclusion

Anatomic ACL-R does not restore the native insertion site in its entirety. Percentage of reconstructed area serves as a rudimentary tool for evaluating the degree of native insertion site coverage using current individualized anatomic techniques and provides a starting point from which to evaluate the clinical significance of complete footprint restoration.

Level of evidence

IV.

Keywords

Percentage of reconstructed area Anatomic ACL reconstruction 

Notes

Acknowledgments

We would like to acknowledge Sebastian Kopf, MD, Alicia Oodsky, and Abhiram Gande for their assistance in this research project.

References

  1. 1.
    Auge WK II, Yifan K (1999) A technique for resolution of graft-tunnel length mismatch in central third bone-patellar tendon-bone anterior cruciate ligament reconstruction. Arthroscopy 15(8):877–881PubMedCrossRefGoogle Scholar
  2. 2.
    Bedi A, Maak T, Musahl V, Citak M, O’Loughlin PF, Choi D, Pearle AD (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction: is the tibial tunnel position most important? Am J Sports Med 39(2):366–373PubMedCrossRefGoogle Scholar
  3. 3.
    Clancy WG Jr, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA (1981) Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Joint Surg Am 63(8):1270–1284PubMedGoogle Scholar
  4. 4.
    Debandi A, Maeyama A, Hoshino Y, Asai S, Goto B, Smolinski P, Fu FH (2012) The effect of tunnel placement on rotational stability after ACL reconstruction: evaluation with use of triaxial accelerometry in a porcine model. Knee Surg Sports Traumatol Arthrosc 21(3):589–595PubMedCrossRefGoogle Scholar
  5. 5.
    Edwards A, Bull AM, Amis AA (2007) The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament: part 1: tibial attachment. Knee Surg Sports Traumatol Arthrosc 15(12):1414–1421PubMedCrossRefGoogle Scholar
  6. 6.
    Edwards A, Bull AM, Amis AA (2008) The attachments of the anteromedial and posterolateral fibre bundles of the anterior cruciate ligament. Part 2: femoral attachment. Knee Surg Sports Traumatol Arthrosc 16(1):29–36PubMedCrossRefGoogle Scholar
  7. 7.
    Grood ES, Walz-Hasselfeld KA, Holden JP, Noyes FR, Levy MS, Butler DL, Jackson DW, Drez DJ (1992) The correlation between anterior–posterior translation and cross-sectional area of anterior cruciate ligament reconstructions. J Orthop Res 10(6):878–885PubMedCrossRefGoogle Scholar
  8. 8.
    Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749PubMedCrossRefGoogle Scholar
  9. 9.
    Hensler D, Working ZM, Illingworth KD, Thorhauer ED, Tashman S, Fu FH (2011) Medial portal drilling: effects on the femoral tunnel aperture morphology during anterior cruciate ligament reconstruction. J Bone Joint Surg Am 93(22):2063–2071PubMedCrossRefGoogle Scholar
  10. 10.
    Hofbauer M, Muller B, Murawski CD, van Eck CF, Fu FH (2013) The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-013-2562-4 Google Scholar
  11. 11.
    Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH (2012) Individualized anterior cruciate ligament surgery: a prospective study comparing anatomic single- and double-bundle reconstruction. Am J Sports Med 40(8):1781–1788PubMedCrossRefGoogle Scholar
  12. 12.
    Hussein M, van Eck CF, Cretnik A, Dinevski D, Fu FH (2012) Individualized anterior cruciate ligament surgery: a prospective study comparing anatomic single- and double-bundle reconstruction. Am J Sports Med 40(8):1781–1788PubMedCrossRefGoogle Scholar
  13. 13.
    Iriuchishima T, Yorifuji H, Aizawa S, Tajika Y, Murakami T, Fu FH (2012) Evaluation of ACL mid-substance cross-sectional area for reconstructed autograft selection. Knee Surg Sports Traumatol Arthrosc 22(1):207–213PubMedCrossRefGoogle Scholar
  14. 14.
    Kamien PM, Hydrick JM, Replogle WH, Go LT, Barrett GR (2013) Age, graft size, and Tegner activity level as predictors of failure in anterior cruciate ligament reconstruction with hamstring autograft. Am J Sports Med 41(8):1808–1812PubMedCrossRefGoogle Scholar
  15. 15.
    Karlsson J, Irrgang JJ, van Eck CF, Samuelsson K, Mejia HA, Fu FH (2011) Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 2: clinical application of surgical technique. Am J Sports Med 39(9):2016–2026PubMedCrossRefGoogle Scholar
  16. 16.
    Kopf S, Martin DE, Tashman S, Fu FH (2010) Effect of tibial drill angles on bone tunnel aperture during anterior cruciate ligament reconstruction. J Bone Joint Surg Am 92(4):871–881PubMedCrossRefGoogle Scholar
  17. 17.
    Kopf S, Pombo MW, Szczodry M, Irrgang JJ, Fu FH (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med 39(1):108–113PubMedCrossRefGoogle Scholar
  18. 18.
    Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28(4):526–531PubMedCrossRefGoogle Scholar
  19. 19.
    Noyes FR, Butler DL, Paulos LE, Grood ES (1983) Intra-articular cruciate reconstruction. I: perspectives on graft strength, vascularization, and immediate motion after replacement. Clin Orthop Relat Res 172:71–77PubMedGoogle Scholar
  20. 20.
    Park SY, Oh H, Park S, Lee JH, Lee SH, Yoon KH (2012) Factors predicting hamstring tendon autograft diameters and resulting failure rates after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21(5):1111–1118PubMedCrossRefGoogle Scholar
  21. 21.
    Rabuck SJ, Middleton KK, Maeda S, Fujimaki Y, Muller B, Araujo PH, Fu FH (2012) Individualized anatomic anterior cruciate ligament reconstruction. Arthrosc Tech 1(1):e23–e29PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Shino K, Kawasaki T, Hirose H, Gotoh I, Inoue M, Ono K (1984) Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Joint Surg Br 66(5):672–681PubMedGoogle Scholar
  23. 23.
    Siebold R (2011) The concept of complete footprint restoration with guidelines for single- and double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19(5):699–706PubMedCrossRefGoogle Scholar
  24. 24.
    Tashman S, Kopf S, Fu FH (2008) The kinematic basis of ACL reconstruction. Op Tech Sports Med 16(3):116–118CrossRefGoogle Scholar
  25. 25.
    Van der Bracht H, Bellemans J, Victor J, Verhelst L, Page B, Verdonk P (2013) Can a tibial tunnel in ACL surgery be placed anatomically without impinging on the femoral notch? A risk factor analysis. Knee Surg Sports Traumatol Arthrosc 22(2):291–297PubMedCrossRefGoogle Scholar
  26. 26.
    van Eck CF, Lesniak BP, Schreiber VM, Fu FH (2010) Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 26(2):258–268PubMedCrossRefGoogle Scholar
  27. 27.
    Voos JE, Musahl V, Maak TG, Wickiewicz TL, Pearle AD (2010) Comparison of tunnel positions in single-bundle anterior cruciate ligament reconstructions using computer navigation. Knee Surg Sports Traumatol Arthrosc 18(9):1282–1289PubMedCrossRefGoogle Scholar
  28. 28.
    Zantop T, Diermann N, Schumacher T, Schanz S, Fu FH, Petersen W (2008) Anatomical and nonanatomical double-bundle anterior cruciate ligament reconstruction: importance of femoral tunnel location on knee kinematics. Am J Sports Med 36(4):678–685PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • K. K. Middleton
    • 1
  • B. Muller
    • 1
    • 2
  • P. H. Araujo
    • 1
    • 3
  • Y. Fujimaki
    • 1
    • 4
  • S. J. Rabuck
    • 1
  • J. J. Irrgang
    • 1
  • S. Tashman
    • 1
  • F. H. Fu
    • 1
  1. 1.Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Department of Orthopaedic Surgery, Orthopaedic Research Center Amsterdam, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Biomechanics, Medicine and Rehabilitation of Locomotor System - Ribeirao Preto Medical SchoolSão Paulo UniversityRibeirão PrêtoBrazil
  4. 4.Department of Orthopaedic SurgeryShowa University School of MedicineShinagawa-kuJapan

Personalised recommendations