Advertisement

Meta-analysis on biomechanical properties of meniscus repairs: are devices better than sutures?

  • Daniel M. Buckland
  • Patrick Sadoghi
  • Matthias D. Wimmer
  • Patrick Vavken
  • Geert I. Pagenstert
  • Victor Valderrabano
  • Claudio RossoEmail author
Knee

Abstract

Purpose

Meniscal repair devices have been extensively tested during the past decades as reported in the literature. Reviewing the different meniscal repair devices and sutures with their respective biomechanical properties.

Methods

For this meta-analysis, we conducted a systematic online search using PubMed, EMBASE, CCTR, and CINAHL using the search terms Meniscus OR Meniscal AND Biomechanics AND Repair). Load-to-failure (LtF), stiffness, and cyclic outcome measures were extracted independently and in duplicate. The systematic search revealed 841 manuscripts in total. After exclusion of duplicates and irrelevant publications, 41 studies remained for final analysis. The studies were published in English and German from 1995 to 2013. Due to differing cyclic force protocols, cyclic outcomes had to be excluded.

Results

Overall, sutures had a higher LtF [suture: 87.7 ± 0.3 N (weighted mean ± standard error), device: 56.3 ± 0.1 N] and stiffness (suture: 8.9 ± 0.04 N/mm, device: 8.6 ± 0.04 N/mm) than devices, both p < 0.05. In LfT testing, PDS 0 Vertical (145.0 ± 8.1 N), OrthoCord 2-0 (143.6 ± 11.3 N), and Ethibond No 0 Vertical (133.4 ± 7.7 N) were the strongest sutures and Meniscal Viper (140.9 ± 5.1 N), MaxFire Vertical (136.2 ± 11.3 N), and FasT-Fix Vertical (115.2 ± 1.6 N) were the strongest devices. Second-generation devices were significantly stronger and stiffer than first-generation devices (p < 0.001).

Clinical relevance

Suture repair remains the gold standard with a vertically oriented suture configuration showing superior LtF values compared to a horizontal configuration. Nevertheless, some meniscal repair devices have similar biomechanical properties to suture repairs. Both suture repairs and devices have a place in meniscal restoration.

Level of evidence

None, meta-analysis of controlled laboratory studies.

Keywords

Meniscus Repair Biomechanics Load-to-failure Stiffness Devices 

Notes

Acknowledgments

We thank all the authors whose studies we analysed for their contribution. Dr. Buckland thanks the Whitaker International Foundation for fellowship support.

Supplementary material

167_2014_2966_MOESM1_ESM.xlsx (205 kb)
Supplementary material Overview over the studies included. This table shows the studies included into our study as well as the Journal, the year of publication and the species. (XLSX 205 kb)

References

  1. 1.
    Albrecht-Olsen P, Lind T, Kristensen G, Falkenberg B (1997) Failure strength of a new meniscus arrow repair technique: biomechanical comparison with horizontal suture. Arthroscopy 13(2):183–187PubMedCrossRefGoogle Scholar
  2. 2.
    Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL (2000) Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 18(1):109–115PubMedCrossRefGoogle Scholar
  3. 3.
    Allen PR, Denham RA, Swan AV (1984) Late degenerative changes after meniscectomy: factors affecting the knee after operation. J Bone Jt Surg Br 66(5):666–671Google Scholar
  4. 4.
    Anderson K, Marx RG, Hannafin J, Warren RF (2000) Chondral injury following meniscal repair with a biodegradable implant. Arthroscopy 16(7):749–753PubMedCrossRefGoogle Scholar
  5. 5.
    Aros BC, Pedroza A, Vasileff WK, Litsky AS, Flanigan DC (2010) Mechanical comparison of meniscal repair devices with mattress suture devices in vitro. Knee Surg Sports Traumatol Arthrosc 18(11):1594–1598PubMedCrossRefGoogle Scholar
  6. 6.
    Barber FA, Ma Herbert, Bava ED, Drew OR (2012) Biomechanical testing of suture-based meniscal repair devices containing ultrahigh-molecular-weight polyethylene suture: update 2011. Arthroscopy 28(6):827–834PubMedCrossRefGoogle Scholar
  7. 7.
    Barber FA, Ma Herbert, Richards DP (2004) Load to failure testing of new meniscal repair devices. Arthroscopy 20(1):45–50PubMedCrossRefGoogle Scholar
  8. 8.
    Barber FA, Herbert MA, Schroeder FA, Aziz-Jacobo J, Sutker MJ (2009) Biomechanical testing of new meniscal repair techniques containing ultra high-molecular weight polyethylene suture. Arthroscopy 25(9):959–967PubMedCrossRefGoogle Scholar
  9. 9.
    Barber FA, Schroeder FA, Oro FB, Beavis RC (2008) FasT-Fix meniscal repair: mid-term results. Arthroscopy 24(12):1342–1348PubMedCrossRefGoogle Scholar
  10. 10.
    Barrett GR, Richardson K, Ruff CG, Jones A (1997) The effect of suture type on meniscus repair: a clinical analysis. Am J Knee Surg 10(1):2–9PubMedGoogle Scholar
  11. 11.
    Becker R, Brettschneider O, Grobel KH, von Versen R, Starke C (2006) Distraction forces on repaired bucket-handle lesions in the medial meniscus. Am J Sports Med 34(12):1941–1947PubMedCrossRefGoogle Scholar
  12. 12.
    Bedi A, Kelly N, Baad M, Fox AJ, Ma Y, Warren RF, Maher SA (2012) Dynamic contact mechanics of radial tears of the lateral meniscus: implications for treatment. Arthroscopy 28(3):372–381PubMedCrossRefGoogle Scholar
  13. 13.
    Boenisch UW, Faber KJ, Ciarelli M, Steadman JR, Arnoczky SP (1999) Pull-out strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures. Am J Sports Med 27(5):626–631PubMedGoogle Scholar
  14. 14.
    Borden P, Nyland J, Caborn DNM, Pienkowski D (2003) Biomechanical comparison of the FasT-Fix meniscal repair suture system with vertical mattress sutures and meniscus arrows. Am J Sports Med 31(3):374–378PubMedGoogle Scholar
  15. 15.
    Chang HC, Nyland J, Caborn DNM, Burden R (2005) Biomechanical evaluation of meniscal repair systems: a comparison of the Meniscal Viper repair system, the vertical mattress FasT-Fix Device, and vertical mattress ethibond sutures. Am J Sports Med 33(12):1846–1852PubMedCrossRefGoogle Scholar
  16. 16.
    Dervin GF, Downing KJ, Keene GC, McBride DG (1997) Failure strengths of suture versus biodegradable arrow for meniscal repair: an in vitro study. Arthroscopy 13(3):296–300PubMedCrossRefGoogle Scholar
  17. 17.
    Dürselen L, Schneider J, Galler M, Claes LE, Bauer G (2003) Cyclic joint loading can affect the initial stability of meniscal fixation implants. Clin Biomech 18(1):44–49CrossRefGoogle Scholar
  18. 18.
    Ellermann A, Siebold R, Buelow JU, Sobau C (2002) Clinical evaluation of meniscus repair with a bioabsorbable arrow: a 2- to 3-year follow-up study. Knee Surg Sports Traumatol Arthrosc 10(5):289–293PubMedCrossRefGoogle Scholar
  19. 19.
    Fisher SR, Markel DC, Koman JD, Atkinson TS (2002) Pull-out and shear failure strengths of arthroscopic meniscal repair systems. Knee Surg Sports Traumatol Arthrosc 10(5):294–299PubMedCrossRefGoogle Scholar
  20. 20.
    Gunes T, Bostan B, Erdem M, Asci M, Sen C, Kelestemur MH (2009) Biomechanical evaluation of arthroscopic all-inside meniscus repairs. Knee Surg Sports Traumatol Arthrosc 17(11):1347–1353PubMedCrossRefGoogle Scholar
  21. 21.
    Gunes T, Bostan B, Erdem M, Asci M, Sen C, Kelestemur MH (2011) The “butterfly” suture technique for meniscal repair. Arch Orthop Trauma Surg 131(3):331–333PubMedCrossRefGoogle Scholar
  22. 22.
    Jani MM (2004) Mechanical properties of bioabsorbable meniscal arrows as a function of tear location: an ex vivo experimental study. Am J Sports Med 32(3):666–674PubMedCrossRefGoogle Scholar
  23. 23.
    Joshi MD, Suh JK, Marui T, Woo SL (1995) Interspecies variation of compressive biomechanical properties of the meniscus. J Biomed Mater Res 29(7):823–828PubMedCrossRefGoogle Scholar
  24. 24.
    Kocabey Y, Chang HC, Brand JC, Nawab A, Nyland J, Caborn DNM (2006) A biomechanical comparison of the FasT-Fix meniscal repair suture system and the RapidLoc device in cadaver meniscus. Arthroscopy 22(4):406–413PubMedCrossRefGoogle Scholar
  25. 25.
    Kocabey Y, Taser O, Nyland J, Doral MN, Demirhan M, Caborn DNM, Sarban S (2006) Pullout strength of meniscal repair after cyclic loading: comparison of vertical, horizontal, and oblique suture techniques. Knee Surg Sports Traumatol Arthrosc 14(10):998–1003PubMedCrossRefGoogle Scholar
  26. 26.
    Krause WR, Pope MH, Johnson RJ, Wilder DG (1976) Mechanical changes in the knee after meniscectomy. J Bone Jt Surg Am 58(5):599–604Google Scholar
  27. 27.
    Aa Lamprakis, Fortis AP, Kostopoulos V, Vlasis K (2009) Biomechanical testing of a shape memory alloy suture in a meniscal suture model. Arthroscopy 25(6):632–638CrossRefGoogle Scholar
  28. 28.
    Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee—the contributions of the supporting structures: a quantitative in vitro study. J Bone Jt Surg Am 58(5):583–594Google Scholar
  29. 29.
    McCann L, Ingham E, Jin Z, Fisher J (2009) Influence of the meniscus on friction and degradation of cartilage in the natural knee joint. Osteoarthr Cartil 17(8):995–1000PubMedCrossRefGoogle Scholar
  30. 30.
    McDermott ID, Amis AA (2006) The consequences of meniscectomy. J Bone Jt Surg Br 88(12):1549–1556CrossRefGoogle Scholar
  31. 31.
    Meakin JR, Shrive NG, Frank CB, Hart DA (2003) Finite element analysis of the meniscus: the influence of geometry and material properties on its behaviour. Knee 10(1):33–41PubMedCrossRefGoogle Scholar
  32. 32.
    Mehta VM, Terry MA (2009) Cyclic testing of 3 all-inside meniscal repair devices: a biomechanical analysis. Am J Sports Med 37(12):2435–2439PubMedCrossRefGoogle Scholar
  33. 33.
    Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF (1999) Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of reporting of meta-analyses. Lancet 354(9193):1896–1900PubMedCrossRefGoogle Scholar
  34. 34.
    Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62(10):1006–1012PubMedCrossRefGoogle Scholar
  35. 35.
    Rankin CC, Lintner DM, Noble PC, Paravic V, Greer E (2002) A biomechanical analysis of meniscal repair techniques. Am J Sports Med 30(4):492–497PubMedGoogle Scholar
  36. 36.
    Renstrom P, Johnson RJ (1990) Anatomy and biomechanics of the menisci. Clin Sports Med 9(3):523–538PubMedGoogle Scholar
  37. 37.
    Richards DP, Barber FA, Herbert MA (2005) Compressive loads in longitudinal lateral meniscus tears: a biomechanical study in porcine knees. Arthroscopy 21(12):1452–1456PubMedCrossRefGoogle Scholar
  38. 38.
    Rimmer MG, Nawana NS, Keene GC, Pearcy MJ (1995) Failure strengths of different meniscal suturing techniques. Arthroscopy 11(2):146–150PubMedCrossRefGoogle Scholar
  39. 39.
    Rodkey WG (2000) Basic biology of the meniscus and response to injury. Instr Course Lect 49:189–193PubMedGoogle Scholar
  40. 40.
    Rosso C, Kovtun K, Dow W, McKenzie B, Nazarian A, Deangelis JP, Ramappa AJ (2011) Comparison of all-inside meniscal repair devices with matched inside-out suture repair. Am J Sports Med 39(12):2634–2639PubMedCrossRefGoogle Scholar
  41. 41.
    Seedhom BB, Dowson D, Wright V (1974) Proceedings: functions of the menisci. A preliminary study. Ann Rheum Dis 33(1):111PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Sequeira MM, Rickenbach M, Wietlisbach V, Tullen B, Schutz Y (1995) Physical activity assessment using a pedometer and its comparison with a questionnaire in a large population survey. Am J Epidemiol 142(9):989–999PubMedGoogle Scholar
  43. 43.
    Song EK, Lee KB (1999) Biomechanical test comparing the load to failure of the biodegradable meniscus arrow versus meniscal suture. Arthroscopy 15(7):726–732PubMedCrossRefGoogle Scholar
  44. 44.
    Staerke C, Bochwitz C, Groebel K-H, Unterhauser F, Becker R (2004) The effect of meniscus compression on the biomechanical properties of repaired meniscal lesions. Winner of the AGA-DonJoy Award 2003. Arch Orthop Trauma Surg 124(4):221–225PubMedCrossRefGoogle Scholar
  45. 45.
    Voloshin AS, Wosk J (1983) Shock absorption of meniscectomized and painful knees: a comparative in vivo study. J Biomed Eng 5(2):157–161PubMedCrossRefGoogle Scholar
  46. 46.
    Xu C, Zhao J (2013) A meta-analysis comparing meniscal repair with meniscectomy in the treatment of meniscal tears: the more meniscus, the better outcome? Knee Surg Sports Traumatol Arthrosc [Epub ahead of print]Google Scholar
  47. 47.
    Zantop T (2004) Initial fixation strength of flexible all-inside meniscus suture anchors in comparison to conventional suture technique and rigid anchors: biomechanical evaluation of new meniscus refixation systems. Am J Sports Med 32(4):863–869PubMedCrossRefGoogle Scholar
  48. 48.
    Zantop T (2005) Cyclic testing of flexible all-inside meniscus suture anchors: biomechanical analysis. Am J Sports Med 33(3):388–394PubMedCrossRefGoogle Scholar
  49. 49.
    Zantop T, Eggers AK, Musahl V, Weimann A, Hassenpflug J, Petersen W (2004) A new rigid biodegradable anchor for meniscus refixation: biomechanical evaluation. Knee Surg Sports Traumatol Arthrosc 12(4):317–324PubMedCrossRefGoogle Scholar
  50. 50.
    Zantop T, Temmig K, Weimann A, Eggers AK, Raschke MJ, Petersen W (2006) Elongation and structural properties of meniscal repair using suture techniques in distraction and shear force scenarios: biomechanical evaluation using a cyclic loading protocol. Am J Sports Med 34(5):799–805PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel M. Buckland
    • 1
    • 2
  • Patrick Sadoghi
    • 3
  • Matthias D. Wimmer
    • 4
    • 5
  • Patrick Vavken
    • 1
    • 2
    • 6
    • 7
  • Geert I. Pagenstert
    • 1
    • 2
  • Victor Valderrabano
    • 1
    • 2
  • Claudio Rosso
    • 1
    • 2
    Email author
  1. 1.Orthopaedic DepartmentUniversity Hospital BaselBaselSwitzerland
  2. 2.University of BaselBaselSwitzerland
  3. 3.Department of Orthopaedic SurgeryMedical University GrazGrazAustria
  4. 4.Department of Orthopaedic SurgeryUniversity Hospital BonnBonnGermany
  5. 5.University of BonnBonnGermany
  6. 6.Sports Medicine Research Laboratory, Department of Orthopedic Surgery, Children’s Hospital BostonHarvard Medical SchoolBostonUSA
  7. 7.Harvard Center for Population and Development StudiesHarvard School of Public HealthBostonUSA

Personalised recommendations