Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 22, Issue 9, pp 1966–1975 | Cite as

Individualized ACL reconstruction

  • Paulo H. AraujoEmail author
  • Mauricio Kfuri Junior
  • Bruno Ohashi
  • Yuichi Hoshino
  • Stephano Zaffagnini
  • Kristian Samuelsson
  • Jon Karlsson
  • Freddie Fu
  • Volker Musahl
Knee

Abstract

The pivot shift test is the only physical examination test capable of predicting knee function and osteoarthritis development after an ACL injury. However, because interpretation and performance of the pivot shift are subjective in nature, the validity of the pivot shift is criticized for not providing objective information for a complete surgical planning for the treatment of rotatory knee laxity. The aim of ACL reconstruction was eliminating the pivot shift sign. Many structures and anatomical characteristics can influence the grading of the pivot shift test and are involved in the genesis and magnitude of rotatory instability after an ACL injury. The objective quantification of the pivot shift may be able to categorize knee laxity and provide adequate information on which structures are affected besides the ACL. A new algorithm for rotational instability treatment is presented, accounting for patients’ unique anatomical characteristics and objective measurement of the pivot shift sign allowing for an individualized surgical treatment.

Level of evidence V.

Keywords

Pivot shift ACL reconstruction Individualized ACL reconstruction Anterior cruciate ligament Treatment Clinical examination Physical examination Rotatory laxity 

References

  1. 1.
    Adachi N, Ochi M, Uchio Y, Iwasa J, Ryoke K, Kuriwaka M (2002) Mechanoreceptors in the anterior cruciate ligament contribute to the joint position sense. Acta Orthop Scand 73:330–334PubMedCrossRefGoogle Scholar
  2. 2.
    Adachi N, Ochi M, Uchio Y, Sumen Y (2000) Anterior cruciate ligament augmentation under arthroscopy. A minimum 2-year follow-up in 40 patients. Arch Orthop Trauma Surg 120:128–133PubMedCrossRefGoogle Scholar
  3. 3.
    Ahldén M, Hoshino Y, Samuelsson K, Araujo P, Musahl V, Karlsson J (2012) Dynamic knee laxity measurement devices. Knee Surg Sports Traumatol Arthrosc 20:621–632PubMedCrossRefGoogle Scholar
  4. 4.
    Amis AA (2012) The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 20:613–620PubMedCrossRefGoogle Scholar
  5. 5.
    Amis AA, Dawkins GP (1991) Functional anatomy of the anterior cruciate ligament fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg Br Vol 73:260–267Google Scholar
  6. 6.
    Araujo P, Eck CF, Torabi M, Fu FH (2012) How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21:1495–1501PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Araujo PH, Ahldén M, Hoshino Y, Muller B, Moloney G, Fu FH, Musahl V (2012) Comparison of three non-invasive quantitative measurement systems for the pivot shift test. Knee Surg Sports Traumatol Arthrosc 20:692–697PubMedCrossRefGoogle Scholar
  8. 8.
    Araujo PH, van Eck CF, Macalena JA, Fu FH (2011) Advances in the three-portal technique for anatomical single- or double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1239–1242PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bach BR, Warren RF, Wickiewicz TL (1988) The pivot shift phenomenon: results and description of a modified clinical test for anterior cruciate ligament insufficiency. Am J Sports Med 16:571–576PubMedCrossRefGoogle Scholar
  10. 10.
    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18:1269–1276PubMedCrossRefGoogle Scholar
  11. 11.
    Bedi A, Musahl V, O’Loughlin P, Maak T, Citak M, Dixon P, Pearle AD (2010) A comparison of the effect of central anatomical single-bundle anterior cruciate ligament reconstruction and double-bundle anterior cruciate ligament reconstruction on pivot-shift kinematics. Am J Sports Med 38:1788–1794PubMedCrossRefGoogle Scholar
  12. 12.
    Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W (2013) Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Traumatol Arthrosc 21:981–985PubMedCrossRefGoogle Scholar
  13. 13.
    Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2009) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18:37–42PubMedCrossRefGoogle Scholar
  14. 14.
    Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899PubMedCrossRefGoogle Scholar
  15. 15.
    Bull AMJ, Earnshaw PH, Smith A, Katchburian MV, Hassan ANA, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br Vol 84:1075–1081CrossRefGoogle Scholar
  16. 16.
    Colombet P, Dejour D, Panisset J-C, Siebold R (2010) Current concept of partial anterior cruciate ligament ruptures. Orthop Traumatol Surg Res 96:S109–S118PubMedCrossRefGoogle Scholar
  17. 17.
    Crain EH, Fithian DC, Paxton EW, Luetzow WF (2005) Variation in anterior cruciate ligament scar pattern: does the scar pattern affect anterior laxity in anterior cruciate ligament-deficient knees? Arthroscopy 21:19–24PubMedCrossRefGoogle Scholar
  18. 18.
    Araki D, Kuroda R, Matsushita T, Matsumoto T, Kubo S, Nagamune K, Kurosaka M (2013) Biomechanical analysis of the knee with partial anterior cruciate ligament disruption: quantitative evaluation using an electromagnetic measurement system. Arthroscopy 29:1053–1062PubMedCrossRefGoogle Scholar
  19. 19.
    Dejour D, Ntagiopoulos PG, Saggin PR, Panisset JC (2013) The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy 29:491–499PubMedCrossRefGoogle Scholar
  20. 20.
    Slocum DB, James SL, Larson RL, Singer KM (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69PubMedGoogle Scholar
  21. 21.
    Dejour HH, Neyret PP, Boileau PP, Donell STS (1994) Anterior cruciate reconstruction combined with valgus tibial osteotomy. Clin Orthop Relat Res 299:220–228PubMedGoogle Scholar
  22. 22.
    Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2008) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129:353–358PubMedCrossRefGoogle Scholar
  23. 23.
    Donaldson WF, Warren RF, Wickiewicz T (1985) A comparison of acute anterior cruciate ligament examinations: initial versus examination under anesthesia. Am J Sports Med 13:5–10PubMedCrossRefGoogle Scholar
  24. 24.
    Espregueira-Mendes J, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A, Oliveira JM, Reis RL (2012) Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20:671–678PubMedCrossRefGoogle Scholar
  25. 25.
    Fetto JF, Marshall JL (1979) Injury to the anterior cruciate ligament producing the pivot-shift sign. J Bone Joint Surg Am 61:710–714PubMedGoogle Scholar
  26. 26.
    Fridén T, Jonsson A, Erlandsson T, Jonsson K, Lindstrand A (1993) Effect of femoral condyle configuration on disability after an anterior cruciate ligament rupture: 100 patients followed for 5 years. Acta Orthop Scand 64:571–574PubMedCrossRefGoogle Scholar
  27. 27.
    Gabriel MT, Wong EK, Woo SL-Y, Yagi M, Debski RE (2006) Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J Orthop Res 22:85–89CrossRefGoogle Scholar
  28. 28.
    Galway R, Beaupre A, MacIntosh D (1972) Pivot shift: a clinical sign of symptomatic anterior cruciate insufficiency. J Bone Joint Surg Br 54:763–764Google Scholar
  29. 29.
    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50PubMedGoogle Scholar
  30. 30.
    Georgoulis A, Pappa L, Moebius U, Malamou-Mitsi V, Pappa S, Papageorgiou C, Agnantis N, Soucacos P (2001) The presence of proprioceptive mechanoreceptors in the remnants of the ruptured ACL as a possible source of re-innervation of the ACL autograft. Knee Surg Sports Traumatol Arthrosc 9:364–368PubMedCrossRefGoogle Scholar
  31. 31.
    Giffin JR (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382PubMedCrossRefGoogle Scholar
  32. 32.
    Haughom BD, Souza R, Schairer WW, Li X, Ma CB (2012) Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20:663–670PubMedCrossRefGoogle Scholar
  33. 33.
    Hefti F, Müller W, Jakob RP, Stäubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234PubMedCrossRefGoogle Scholar
  34. 34.
    Hofbauer M, Muller B, Murawski CD, Eck CF, Fu FH (2013) The concept of individualized anatomic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc, June 6 [Epub ahead of print]Google Scholar
  35. 35.
    Hoshino Y, Araujo P, Ahldén M, Moore CG, Kuroda R, Zaffagnini S, Karlsson J, Fu FH, Musahl V (2012) Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc 20:732–736PubMedCrossRefGoogle Scholar
  36. 36.
    Hoshino Y, Araujo P, Ahldén M, Samuelsson K, Muller B, Hofbauer M, Wolf MR, Irrgang JJ, Fu FH, Musahl V (2013) Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 21:975–980PubMedCrossRefGoogle Scholar
  37. 37.
    Hoshino Y, Araujo P, Irrgang JJ, Fu FH, Musahl V (2012) An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc 20:703–707PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35:1098–1104PubMedCrossRefGoogle Scholar
  39. 39.
    Howell SM, Knox KE, Farley TE, Taylor MA (1995) Revascularization of a human anterior cruciate ligament graft during the first 2 years of implantation. Am J Sports Med 23:42–49PubMedCrossRefGoogle Scholar
  40. 40.
    Hughston JC, Andrews JR, Cross MJ, Moschi A (1976) Classification of knee ligament instabilities. Part I. The medial compartment and cruciate ligaments. J Bone Joint Surg Am 58:159–172PubMedGoogle Scholar
  41. 41.
    Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S (2009) Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 25:488–495PubMedCrossRefGoogle Scholar
  42. 42.
    Jakob RP, Stäubli HU, Deland JT (1987) Grading the pivot shift. Objective tests with implications for treatment. J Bone Joint Surg Br Vol 69:294–299Google Scholar
  43. 43.
    Jonsson H, Riklund-Åhlström K, Lind J (2004) Positive pivot shift after ACL reconstruction predicts later osteoarthritis 63 patients followed 5–9 years after surgery. Acta Orthop Scand 75:594–599PubMedCrossRefGoogle Scholar
  44. 44.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634PubMedCrossRefGoogle Scholar
  45. 45.
    Kopf S, Kauert R, Halfpaap J, Jung T, Becker R (2012) A new quantitative method for pivot shift grading. Knee Surg Sports Traumatol Arthrosc 20:718–723PubMedCrossRefGoogle Scholar
  46. 46.
    Kujala UM, Nelimarkka O, Koskinen SK (1992) Relationship between the pivot shift and the configuration of the lateral tibial plateau. Arch Orthop Trauma Surg 111:228–229PubMedCrossRefGoogle Scholar
  47. 47.
    Kuroda R, Hoshino Y, Araki D, Nishizawa Y, Nagamune K, Matsumoto T, Kubo S, Matsushita T, Kurosaka M (2012) Quantitative measurement of the pivot shift, reliability, and clinical applications. Knee Surg Sports Traumatol Arthrosc 20:686–691PubMedCrossRefGoogle Scholar
  48. 48.
    Kuroda R, Hoshino Y, Kubo S, Araki D, Oka S, Nagamune K, Kurosaka M (2012) Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency: a global survey and kinematics assessment. Am J Sports Med 40:91–99PubMedCrossRefGoogle Scholar
  49. 49.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2010) Feature selection using a principal component analysis of the kinematics of the pivot shift phenomenon. J Biomech 43:3080–3084PubMedCrossRefGoogle Scholar
  50. 50.
    Lane CG, Warren R, Pearle AD (2008) The pivot shift. J Am Acad Orthop Surg 16:679–688PubMedGoogle Scholar
  51. 51.
    Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16:487–492PubMedCrossRefGoogle Scholar
  52. 52.
    Liu W, Maitland ME (2003) Influence of anthropometric and mechanical variations on functional instability in the ACL-deficient knee. Ann Biomed Eng 31:1153–1161PubMedCrossRefGoogle Scholar
  53. 53.
    Lopomo N, Signorelli C, Bonanzinga T, Muccioli GMM, Visani A, Zaffagnini S (2012) Quantitative assessment of pivot-shift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 20:713–717PubMedCrossRefGoogle Scholar
  54. 54.
    Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2009) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28:164–169Google Scholar
  55. 55.
    Lopomo N, Zaffagnini S, Signorelli C, Bignozzi S, Giordano G, Marcheggiani Muccioli GM, Visani A (2012) An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Eng 15:1323–1328CrossRefGoogle Scholar
  56. 56.
    Losee RE, Johnson TR, Southwick WO (1978) Anterior subluxation of the lateral tibial plateau. A diagnostic test and operative repair. J Bone Joint Surg Am 60:1015–1030PubMedGoogle Scholar
  57. 57.
    Lustig S, Magnussen RA, Cheze L, Neyret P (2012) The KneeKG system: a review of the literature. Knee Surg Sports Traumatol Arthrosc 20:633–638PubMedCrossRefGoogle Scholar
  58. 58.
    Ma CB, Keifa E, Dunn W, Fu FH, Harner CD (2010) Can pre-operative measures predict quadruple hamstring graft diameter? Knee 17:81–83PubMedCrossRefGoogle Scholar
  59. 59.
    Ma CB, Papageogiou CD, Debski RE, Woo SL (2000) Interaction between the ACL graft and MCL in a combined ACL + MCL knee injury using a goat model. Acta Orthop Scand 71:387–393PubMedCrossRefGoogle Scholar
  60. 60.
    Maeyama A, Hoshino Y, Debandi A, Kato Y, Saeki K, Asai S, Goto B, Smolinski P, Fu FH (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19:1233–1238PubMedCrossRefGoogle Scholar
  61. 61.
    Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br Vol 72:816–821Google Scholar
  62. 62.
    Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL (2010) The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol Arthrosc 18:1232–1238PubMedCrossRefGoogle Scholar
  63. 63.
    Musahl V, Citak M, O’Loughlin PF, Choi D, Bedi A, Pearle AD (2010) The effect of medial versus lateral meniscectomy on the stability of the anterior cruciate ligament-deficient knee. Am J Sports Med 38:1591–1597PubMedCrossRefGoogle Scholar
  64. 64.
    Musahl V, Hoshino Y, Ahldén M, Araujo P, Irrgang JJ, Zaffagnini S, Karlsson J, Fu FH (2012) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20:724–731PubMedCrossRefGoogle Scholar
  65. 65.
    Musahl V, Hoshino Y, Becker R, Karlsson J (2012) Rotatory knee laxity and the pivot shift. Knee Surg Sports Traumatol Arthrosc 20:601–602PubMedCrossRefGoogle Scholar
  66. 66.
    Musahl V, Kopf S, Rabuck S, Becker R (2012) Rotatory knee laxity tests and the pivot shift as tools for ACL treatment algorithm. Knee Surg Sports Traumatol Arthrosc 20:793–800PubMedCrossRefGoogle Scholar
  67. 67.
    Musahl V, Seil R, Zaffagnini S, Tashman S, Karlsson J (2011) The role of static and dynamic rotatory laxity testing in evaluating ACL injury. Knee Surg Sports Traumatol Arthrosc 20:603–612PubMedCrossRefGoogle Scholar
  68. 68.
    Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD (2009) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc 18:1208–1213PubMedCrossRefGoogle Scholar
  69. 69.
    Myer GD, Ford KR, Paterno MV, Nick TG, Hewett TE (2008) The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med 36:1073–1080PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155PubMedCrossRefGoogle Scholar
  71. 71.
    Noyes FR, Mooar LA, Moorman CT III, McGinniss GH (1989) Partial tears of the anterior cruciate ligament: progression to complete ligament deficiency. J Bone Joint Surg Br 71:825–833PubMedGoogle Scholar
  72. 72.
    Ochi M, Iwasa J, Uchio Y, Adachi N, Sumen Y (1999) The regeneration of sensory neurones in the reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 81:902–906PubMedCrossRefGoogle Scholar
  73. 73.
    Okazaki K, Tashiro Y, Izawa T, Matsuda S (2012) Rotatory laxity evaluation of the knee using modified Slocum’s test in open magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20:679–685PubMedCrossRefGoogle Scholar
  74. 74.
    Pearle AD, Kendoff D, Musahl V, Warren RF (2009) The pivot-shift phenomenon during computer-assisted anterior cruciate ligament reconstruction. J Bone Joint Surg Am 91(Suppl 1):115–118PubMedCrossRefGoogle Scholar
  75. 75.
    Pearsall AWA, Kovaleski JEJ, Heitman RJR, Gurchiek LRL, Hollis JMJ (2006) The relationships between instrumented measurements of ankle and knee ligamentous laxity and generalized joint laxity. J Sports Med Phys Fit 46:104–110Google Scholar
  76. 76.
    Pernin J, Verdonk P, Selmi TAS, Massin P, Neyret P (2010) Long-term follow-up of 24.5 years after intra-articular anterior cruciate ligament reconstruction with lateral extra-articular augmentation. Am J Sports Med 38:1094–1102PubMedCrossRefGoogle Scholar
  77. 77.
    Rudy TW, Livesay GA, Woo SL, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29:1357–1360PubMedCrossRefGoogle Scholar
  78. 78.
    Alford JW, Bach Jr BR (2005) Instrumented ligamentous laxity testing. In: Scott WN, Insall JN (ed) Insall & Scott surgery of the knee, 4th edn. Churchill Livingstone, Elsevier, pp 584–614Google Scholar
  79. 79.
    Sonnery-Cottet B, Lavoie F, Ogassawara R, Scussiato RG, Kidder JF, Chambat P (2010) Selective anteromedial bundle reconstruction in partial ACL tears: a series of 36 patients with mean 24 months follow-up. Knee Surg Sports Traumatol Arthrosc 18:47–51PubMedCrossRefGoogle Scholar
  80. 80.
    Suero EM, Njoku IU, Voigt MR, Lin J, Koenig D, Pearle AD (2013) The role of the iliotibial band during the pivot shift test. Knee Surg Sports Traumatol Arthrosc 21:2096–2100PubMedCrossRefGoogle Scholar
  81. 81.
    Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37:909–916PubMedCrossRefGoogle Scholar
  82. 82.
    Uhorchak JM, Scoville CR, Williams GN, Arciero RA, Pierre PS, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective 4-year evaluation of 859 west point cadets. Am J Sports Med 31:831–842PubMedGoogle Scholar
  83. 83.
    van Eck CF, Lesniak BP, Schreiber VM, Fu FH (2010) Anatomic single- and double-bundle anterior cruciate ligament reconstruction flowchart. Arthroscopy 26(2):258–268PubMedCrossRefGoogle Scholar
  84. 84.
    Zaffagnini S, Bonanzinga T, Muccioli GM, Giordano G, Bruni D, Bignozzi S, Lopomo N, Marcacci M (2011) Does chronic medial collateral ligament laxity influence the outcome of anterior cruciate ligament reconstruction? A prospective evaluation with a minimum 3-year follow up. J Bone Joint Surg Br 93:1060–1064PubMedCrossRefGoogle Scholar
  85. 85.
    Zaffagnini S, Signorelli C, Lopomo N, Bonanzinga T, Marcheggiani Muccioli GM, Bignozzi S, Visani A, Marcacci M (2011) Anatomic double-bundle and over-the-top single-bundle with additional extra-articular tenodesis: an in vivo quantitative assessment of knee laxity in two different ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 20:153–159PubMedCrossRefGoogle Scholar
  86. 86.
    Zantop T, Herbort M, Raschke MJ, Fu FH, Petersen W (2006) The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation. Am J Sports Med 35:223–227PubMedCrossRefGoogle Scholar
  87. 87.
    Zantop T, Schumacher T, Diermann N, Schanz S, Raschke MJ, Petersen W (2006) Anterolateral rotational knee instability: role of posterolateral structures. Arch Orthop Trauma Surg 127:743–752PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Paulo H. Araujo
    • 1
    Email author
  • Mauricio Kfuri Junior
    • 1
  • Bruno Ohashi
    • 2
  • Yuichi Hoshino
    • 3
  • Stephano Zaffagnini
    • 4
  • Kristian Samuelsson
    • 5
  • Jon Karlsson
    • 5
  • Freddie Fu
    • 2
  • Volker Musahl
    • 2
  1. 1.Department of Biomechanics, Medicine and Rehabilitation of Locomotor System - Ribeirao Preto Medical SchoolSão Paulo UniversityRibeirão PrêtoBrazil
  2. 2.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA
  3. 3.Department of Orthopaedic SurgeryKobe Kaisei HospitalKobeJapan
  4. 4.Istituto Ortopedico RizzoliUniversity of BolognaBolognaItaly
  5. 5.Department of OrthopaedicsSahlgrenska UniversityGöteborgSweden

Personalised recommendations