Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 22, Issue 9, pp 2202–2208 | Cite as

Knee kinematics is altered post-fatigue while performing a crossover task

  • Nelson CortesEmail author
  • Eric Greska
  • Jatin P. Ambegaonkar
  • Roger O. Kollock
  • Shane V. Caswell
  • James A. Onate



To examine the effect of a sequential fatigue protocol on lower extremity biomechanics during a crossover cutting task in female soccer players.


Eighteen female collegiate soccer players alternated between a fatigue protocol and two consecutive unanticipated crossover trials until fatigue was reached. Lower extremity biomechanics were evaluated during the crossover using a 3D motion capture system and two force plates. Repeated-measures ANOVAs analysed differences between three sequential stages of fatigue (pre, 50, 100 %) for each dependent variable (α = 0.05).


Knee flexion angles at initial contact (IC) for pre (−32 ± 9°) and 50 % (−29 ± 11°) were significantly higher than at 100 % fatigue (−22 ± 9°) (p < 0.001 and p = 0.015, respectively). Knee adduction angles at IC for pre (9 ± 5°) and 50 % (8 ± 4°) were significantly higher (p = 0.006 and p = 0.049, respectively) than at 100 % fatigue (6 ± 4°).


Fatigue altered sagittal and frontal knee kinematics after 50 % fatigue whereupon participants had diminished knee control at initial contact. Interventions should attempt to reduce the negative effects of fatigue on lower extremity biomechanics by promoting appropriate frontal plane alignment and increased knee flexion during fatigue status.

Level of evidence



Kinematics ACL injury Knee Female Soccer Decision-making 



The authors gratefully acknowledge the research support from National Institute of Health (1R03AR054031-01, 1R01AR062578-01) and the Portuguese Foundation for Science and Technology (SFRH/BD/28046/2006).


  1. 1.
    Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med 33(4):524–530PubMedCrossRefGoogle Scholar
  2. 2.
    Arendt EA, Agel J, Dick R (1999) Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34(2):86–92PubMedCentralPubMedGoogle Scholar
  3. 3.
    Begon M, Monnet T, Lacouture P (2007) Effects of movement for estimating the hip joint centre. Gait Posture 25(3):353–359PubMedCrossRefGoogle Scholar
  4. 4.
    Beynnon BD, Fleming BC, Johnson RJ, Nichols CE, Renstrom PA, Pope MH (1995) Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med 23(1):24–34PubMedCrossRefGoogle Scholar
  5. 5.
    Borotikar BS, Newcomer R, Koppes R, McLean SG (2008) Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech (Bristol Avon) 23(1):81–92CrossRefGoogle Scholar
  6. 6.
    Chappell JD, Herman DC, Knight BS, Kirkendall DT, Garrett WE, Yu B (2005) Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med 33(7):1022–1029PubMedCrossRefGoogle Scholar
  7. 7.
    Cortes N, Blount E, Ringleb S, Onate J (2011) Soccer-specific video simulation for improving movement assessment. Sports Biomech/Int Soc Biomech Sports 10(1):12–24CrossRefGoogle Scholar
  8. 8.
    Cortes N, Blount E, Ringleb S, Onate JA (2011) Soccer-specific video simulation for improving movement assessment. Sports Biomech 10(01):22–34PubMedCrossRefGoogle Scholar
  9. 9.
    Cortes N, Onate J, Van Lunen B (2011) Pivot task increases knee frontal plane loading compared with sidestep and drop-jump. J Sports Sci 29(1):83–92PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Covassin T, Weiss L, Powell J, Womack C (2007) Effects of a maximal exercise test on neurocognitive function. Br J Sports Med 41(6):370–374 discussion 374PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J (2003) Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol Avon) 18(7):662–669CrossRefGoogle Scholar
  12. 12.
    Dempster WT (1955) Space requirements of the seated operator. Wright Air Dev Center Tech Rep 55159:55–159Google Scholar
  13. 13.
    Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK (2007) Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc 39(5):822–829PubMedCrossRefGoogle Scholar
  14. 14.
    Golightly YM, Marshall SW, Callahan LF, Guskiewicz K (2009) Early-onset arthritis in retired National Football League players. J Phys Act Health 6(5):638–643PubMedGoogle Scholar
  15. 15.
    Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Garrick JG, Hewett TE, Huston L, Ireland ML, Johnson RJ, Kibler WB, Lephart S, Lewis JL, Lindenfeld TN, Mandelbaum BR, Marchak P, Teitz CC, Wojtys EM (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8(3):141–150PubMedGoogle Scholar
  16. 16.
    Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, Dick RW, Engebretsen L, Garrett WE Jr, Hannafin JA, Hewett TE, Huston LJ, Ireland ML, Johnson RJ, Lephart S, Mandelbaum BR, Mann BJ, Marks PH, Marshall SW, Myklebust G, Noyes FR, Powers C, Shields C Jr, Shultz SJ, Silvers H, Slauterbeck J, Taylor DC, Teitz CC, Wojtys EM, Yu B (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34(9):1512–1532PubMedCrossRefGoogle Scholar
  17. 17.
    Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33(4):492–501PubMedCrossRefGoogle Scholar
  18. 18.
    Isaacs L, Pohlman E (1991) Effects of exercise intensity on an accompanying timing task. J Human Mov Stud 20:123–131Google Scholar
  19. 19.
    Kernozek TW, Torry MR, Iwasaki M (2008) Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am J Sports Med 36(3):554–565PubMedCrossRefGoogle Scholar
  20. 20.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769PubMedCrossRefGoogle Scholar
  21. 21.
    Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152PubMedCrossRefGoogle Scholar
  22. 22.
    Lu TW, O’Connor JJ (1999) Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech 32(2):129–134PubMedCrossRefGoogle Scholar
  23. 23.
    Lucci S, Cortes N, Van Lunen B, Ringleb S, Onate J (2011) Knee and hip sagittal and transverse plane changes after two fatigue protocols. J Sci Med Sport 14:453–459PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Maffulli N, Longo UG, Gougoulias N, Loppini M, Denaro V (2010) Long-term health outcomes of youth sports injuries. Br J Sports Med 44(1):21–25PubMedCrossRefGoogle Scholar
  25. 25.
    Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13(6):930–935PubMedCrossRefGoogle Scholar
  26. 26.
    Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament: an in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72(4):557–567PubMedGoogle Scholar
  27. 27.
    McLean SG, Fellin RE, Suedekum N, Calabrese G, Passerallo A, Joy S (2007) Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc 39(3):502–514PubMedCrossRefGoogle Scholar
  28. 28.
    McLean SG, Samorezov JE (2009) Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc 41(8):1661–1672PubMedGoogle Scholar
  29. 29.
    Oiestad BE, Engebretsen L, Storheim K, Risberg MA (2009) Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med 37(7):1434–1443PubMedCrossRefGoogle Scholar
  30. 30.
    Orishimo KF, Kremenic IJ (2006) Effect of fatigue on single-leg hop landing biomechanics. J Appl Biomech 22(4):245–254PubMedGoogle Scholar
  31. 31.
    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23(12):1320–1325 e1326PubMedCrossRefGoogle Scholar
  32. 32.
    Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38(1):107–116PubMedCrossRefGoogle Scholar
  33. 33.
    Shelton J, Kumar GP (2010) Comparison between auditory and visual simple reaction times. Neurosci Med 1(1):30–32CrossRefGoogle Scholar
  34. 34.
    Shultz SJ, Schmitz RJ, Nguyen AD (2008) Research retreat IV: ACL injuries—the gender bias: April 3-5, 2008 Greensboro, NC. J Athl Train 43(5):530–531PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Winter DA (2009) Biomechanics and motor control of human movement. Wiley, New YorkCrossRefGoogle Scholar
  36. 36.
    Yu B, Gabriel D, Noble L, An K (1999) Estimate of the optimum cutoff frequency for the Butterworth low-pass digital filter. J Appl Biomech 15(3):318–329Google Scholar
  37. 37.
    Yu B, Lin CF, Garrett WE (2006) Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech (Bristol Avon) 21(3):297–305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nelson Cortes
    • 1
    Email author
  • Eric Greska
    • 2
  • Jatin P. Ambegaonkar
    • 1
  • Roger O. Kollock
    • 3
  • Shane V. Caswell
    • 1
  • James A. Onate
    • 4
  1. 1.Sports Medicine Assessment, Research & Testing (SMART) LaboratoryGeorge Mason UniversityManassasUSA
  2. 2.Health, Leisure, and Exercise ScienceUniversity of West FloridaPensacolaUSA
  3. 3.Department of Kinesiology and HealthNorthern Kentucky UniversityHighland HeightsUSA
  4. 4.The Ohio State UniversityColumbusUSA

Personalised recommendations