Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 22, Issue 11, pp 2655–2661 | Cite as

Influence of knee flexion angle and weight bearing on the Tibial Tuberosity-Trochlear Groove (TTTG) distance for evaluation of patellofemoral alignment

  • Kaywan IzadpanahEmail author
  • Elisabeth Weitzel
  • Marco Vicari
  • Jürgen Hennig
  • Matthias Weigel
  • Norbert P. Südkamp
  • Philipp Niemeyer
Knee

Abstract

Purpose

The aim of the present study was to investigate the influence of knee flexion and weight bearing on the Tibial Tuberosity-Trochlear Groove (TTTG) distance.

Materials and methods

Magnetic resonance imaging of the knee was carried out in 8 healthy volunteers. An open 0.25 T scanner equipped with a C-shaped permanent tilting magnet allowing examinations in weight-bearing conditions was used for the present investigation. A 3D gradient-echo sequence with axial slice orientation was obtained in a lying and an upright position with the knee straight and at 30° of knee flexion. The medial, central and lateral trochlear heights as well as the TTTG were determined.

Results

The mean medial trochlear height was 76.2 ± 4 %, the central trochlear height was 72.2 ± 3 %, and lateral trochlear height was 82.9 ± 3 %. The mean TTTG distance was 11.6 ± 4.4 mm in lying position at 0° knee flexion and 7.3 ± 2.9 mm (n.s.) at 30° knee flexion. Under weight bearing, the mean TTTG was significantly smaller at both 0° knee flexion 6.3 ± 3.2 mm (p = 0.040) and 30° knee flexion 4.9 ± 3.9 mm (p = 0.006) compared to the lying position with 0° knee flexion.

Conclusion

Tibial Tuberosity-Trochlear Groove distance depends on both knee flexion angle and weight bearing. The latter only seems to be of relevance in full extension.

Keywords

Tibial Tuberosity-Trochlear Groove MRI Weight bearing Knee flexion Quadriceps muscle activation 

Notes

Conflict of interest

The authors report the following potential conflict of interest or source of funding in relation to this article: M. Vicari is an employee of and J. Hennig is a consultant for Esaote S.p.A., Genoa, Italy.

References

  1. 1.
    Biedert RM, Albrecht S (2006) The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc 14(8):707–712PubMedCrossRefGoogle Scholar
  2. 2.
    Biedert RM, Bachmann M (2009) Anterior-posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 17(10):1225–1230PubMedCrossRefGoogle Scholar
  3. 3.
    Dejour H, Walch G, Neyret P, Adeleine P (1990) Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot 76(1):45–54PubMedGoogle Scholar
  4. 4.
    Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2(1):19–26PubMedCrossRefGoogle Scholar
  5. 5.
    Fithian DC, Mishra DK, Balen PF, Stone ML, Daniel DM (1995) Instrumented measurement of patellar mobility. Am J Sports Med 23(5):607–615PubMedCrossRefGoogle Scholar
  6. 6.
    Fuss FK (1992) Principles and mechanisms of automatic rotation during terminal extension in the human knee joint. J Anat 180(Pt 2):297–304PubMedPubMedCentralGoogle Scholar
  7. 7.
    Goutallier D, Bernageau J, Lecudonnec B (1978) The measurement of the tibial tuberosity. Patella groove distanced technique and results (author’s transl). Rev Chir Orthop Reparatrice Appar Mot 64(5):423–428PubMedGoogle Scholar
  8. 8.
    Izadpanah K, Weitzel E, Honal M, Winterer J, Vicari M, Maier D, Jaeger M, Kotter E, Hennig J, Weigel M, Sudkamp NP (2012) In vivo analysis of coracoclavicular ligament kinematics during shoulder abduction. Am J Sports Med 40(1):185–192PubMedCrossRefGoogle Scholar
  9. 9.
    Kalichman L, Zhang Y, Niu J, Goggins J, Gale D, Felson DT, Hunter D (2007) The association between patellar alignment and patellofemoral joint osteoarthritis features—an MRI study. Rheumatology (Oxford) 46(8):1303–1308CrossRefGoogle Scholar
  10. 10.
    Koeter S, Diks MJ, Anderson PG, Wymenga AB (2007) A modified tibial tubercle osteotomy for patellar maltracking: results at two years. J Bone Joint Surg Br 89(2):180–185PubMedCrossRefGoogle Scholar
  11. 11.
    Lorenz A, Muller O, Kohler P, Wunschel M, Wulker N, Leichtle UG (2012) The influence of asymmetric quadriceps loading on patellar tracking—an in vitro study. Knee 19(6):818–822PubMedCrossRefGoogle Scholar
  12. 12.
    Miyanishi K, Nagamine R, Murayama S, Miura H, Urabe K, Matsuda S, Hirata G, Iwamoto Y (2000) Tibial tubercle malposition in patellar joint instability: a computed tomography study in full extension and at 30 degree flexion. Acta Orthop Scand 71(3):286–291PubMedCrossRefGoogle Scholar
  13. 13.
    Nagamine R, Miura H, Inoue Y, Tanaka K, Urabe K, Okamoto Y, Nishizawa M, Iwamoto Y (1997) Malposition of the tibial tubercle during flexion in knees with patellofemoral arthritis. Skeletal Radiol 26(10):597–601PubMedCrossRefGoogle Scholar
  14. 14.
    Pandit S, Frampton C, Stoddart J, Lynskey T (2011) Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop 35(12):1799–1803PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Panni AS, Cerciello S, Maffulli N, Di Cesare M, Servien E, Neyret P (2011) Patellar shape can be a predisposing factor in patellar instability. Knee Surg Sports Traumatol Arthrosc 19(4):663–670PubMedCrossRefGoogle Scholar
  16. 16.
    Petri M, von Falck C, Broese M, Liodakis E, Balcarek P, Niemeyer P, Hofmeister M, Krettek C, Voigt C, Haasper C, Zeichen J, Frosch KH, Lill H, Jagodzinski M (2012) Influence of rupture patterns of the medial patellofemoral ligament (MPFL) on the outcome after operative treatment of traumatic patellar dislocation. Knee Surg Sports Traumatol Arthrosc. doi: 10.1007/s00167-012-2037-z Google Scholar
  17. 17.
    Sahara W, Sugamoto K, Murai M, Tanaka H, Yoshikawa H (2006) 3D kinematic analysis of the acromioclavicular joint during arm abduction using vertically open MRI. J Orthop Res 24(9):1823–1831PubMedCrossRefGoogle Scholar
  18. 18.
    Salzmann GM, Weber TS, Spang JT, Imhoff AB, Schottle PB (2010) Comparison of native axial radiographs with axial MR imaging for determination of the trochlear morphology in patients with trochlear dysplasia. Arch Orthop Trauma Surg 130(3):335–340PubMedCrossRefGoogle Scholar
  19. 19.
    Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J (2006) The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13(1):26–31PubMedCrossRefGoogle Scholar
  20. 20.
    Seitlinger G, Scheurecker G, Hogler R, Labey L, Innocenti B, Hofmann S (2012) Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 40(5):1119–1125PubMedCrossRefGoogle Scholar
  21. 21.
    Senavongse W, Amis AA (2005) The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability. J Bone Joint Surg Br 87(4):577–582PubMedCrossRefGoogle Scholar
  22. 22.
    Shakespeare D, Fick D (2005) Patellar instability-can the TT-TG distance be measured clinically? Knee 12(3):201–204PubMedCrossRefGoogle Scholar
  23. 23.
    Shibanuma N, Sheehan FT, Stanhope SJ (2005) Limb positioning is critical for defining patellofemoral alignment and femoral shape. Clin Orthop Relat Res 434:198–206PubMedCrossRefGoogle Scholar
  24. 24.
    Staubli HU, Durrenmatt U, Porcellini B, Rauschning W (1999) Anatomy and surface geometry of the patellofemoral joint in the axial plane. J Bone Joint Surg Br 81(3):452–458PubMedCrossRefGoogle Scholar
  25. 25.
    Steinbruck A, Milz S, Woiczinski M, Schroder C, Utzschneider S, Jansson V, Fottner A (2011) Anatomy and biomechanics of the patellofemoral joint: physiological conditions and changes after total knee arthroplasty. Orthopade 40(10): 848, 850–852, 854Google Scholar
  26. 26.
    Tanamas SK, Teichtahl AJ, Wluka AE, Wang Y, Davies-Tuck M, Urquhart DM, Jones G, Cicuttini FM (2010) The associations between indices of patellofemoral geometry and knee pain and patella cartilage volume: a cross-sectional study. BMC Musculoskelet Disord 11(87):1471–2474Google Scholar
  27. 27.
    Tecklenburg K, Dejour D, Hoser C, Fink C (2006) Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 14(3):235–240PubMedCrossRefGoogle Scholar
  28. 28.
    Tsavalas N, Katonis P, Karantanas AH (2012) Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study. Eur Radiol 22(2):418–428Google Scholar
  29. 29.
    Tsuda E, Ishibashi Y, Yamamoto Y, Maeda S (2012) Incidence and radiologic predictor of postoperative patellar instability after Fulkerson procedure of the tibial tuberosity for recurrent patellar dislocation. Knee Surg Sports Traumatol Arthrosc 20(10):2062–2070PubMedCrossRefGoogle Scholar
  30. 30.
    van Huyssteen AL, Hendrix MR, Barnett AJ, Wakeley CJ, Eldridge JD (2006) Cartilage-bone mismatch in the dysplastic trochlea. An MRI study. J Bone Joint Surg Br 88(5):688–691PubMedCrossRefGoogle Scholar
  31. 31.
    Wagenaar FC, Koeter S, Anderson PG, Wymenga AB (2007) Conventional radiography cannot replace CT scanning in detecting tibial tubercle lateralisation. Knee 14(1):51–54PubMedCrossRefGoogle Scholar
  32. 32.
    Weber-Spickschen TS, Spang J, Kohn L, Imhoff AB, Schottle PB (2011) The relationship between trochlear dysplasia and medial patellofemoral ligament rupture location after patellar dislocation: an MRI evaluation. Knee 18(3):185–188PubMedCrossRefGoogle Scholar
  33. 33.
    Wilcox JJ, Snow BJ, Aoki SK, Hung M, Burks RT (2012) Does landmark selection affect the reliability of tibial tubercle-trochlear groove measurements using MRI? Clin Orthop Relat Res 470:2253–2260PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wittstein JR, Bartlett EC, Easterbrook J, Byrd JC (2006) Magnetic resonance imaging evaluation of patellofemoral malalignment. Arthroscopy 22(6):643–649PubMedCrossRefGoogle Scholar
  35. 35.
    Wunschel M, Leichtle U, Obloh C, Wulker N, Muller O (2011) The effect of different quadriceps loading patterns on tibiofemoral joint kinematics and patellofemoral contact pressure during simulated partial weight-bearing knee flexion. Knee Surg Sports Traumatol Arthrosc 19(7):1099–1106PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kaywan Izadpanah
    • 1
    Email author
  • Elisabeth Weitzel
    • 1
  • Marco Vicari
    • 2
    • 3
  • Jürgen Hennig
    • 3
  • Matthias Weigel
    • 3
  • Norbert P. Südkamp
    • 1
  • Philipp Niemeyer
    • 1
  1. 1.Department of Orthopedic and Trauma SurgeryUniversity Medical Center FreiburgFreiburgGermany
  2. 2.Esaote SpAGenoaItaly
  3. 3.Department of Radiology, Medical PhysicsUniversity Medical CenterFreiburgGermany

Personalised recommendations