Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 22, Issue 8, pp 1799–1804 | Cite as

No influence of coronal laxity and alignment on lift-off after well-balanced and aligned total knee arthroplasty

  • Satoshi HamaiEmail author
  • Hiromasa Miura
  • Ken Okazaki
  • Takeshi Shimoto
  • Hidehiko Higaki
  • Yukihide Iwamoto



In vivo fluoroscopic analyses have revealed the kinematics after total knee arthroplasty (TKA), including femoral condylar lift-off. This study asked whether differences in static varus–valgus laxity or coronal limb alignment after TKA affect lift-off under weight-bearing conditions. It was hypothesised that there is a correlation between coronal laxity or alignment and lift-off during walking.


The current study analysed nineteen subjects undergoing cruciate-retaining TKA performed by the measured resection technique. The varus–valgus laxity at knee extension was measured using a 150 N stress radiograph. The mechanical axis was measured using a full-standing radiograph. Continuous radiological images were taken while the subject walked on a treadmill, and the images during single-leg stance were analysed to determine the lift-off using a 3D-to-2D image-to-model registration technique.


The average angle in varus/valgus stress was 6.8 ± 1.8°/6.6 ± 2.1°. No statistically significant differences were observed between the varus and valgus laxity. The average amount of lift-off was 0.7 ± 0.4 mm. The static varus–valgus laxity (n. s.) or the differences in the laxities (n. s.) on the stress radiograph did not influence lift-off. The weight-bearing ratio was achieved within the middle third of the knee in 90 % of subjects. Two outliers with valgus alignment (68 ± 1 %) demonstrated no significant difference in lift-off in comparison with the majority of the subjects (46 ± 9 %).


The static coronal laxity and alignment did not influence the lift-off under dynamic weight-bearing conditions after well-balanced and aligned cruciate-retaining TKA. Measured resection technique can produce sufficient coronal stability and alignment without significant lift-off during walking.

Level of evidence



Laxity Alignment Lift-off Walking Total knee arthroplasty Measured resection 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Andriacchi TP, Stanwyck TS, Galante JO (1986) Knee biomechanics and total knee replacement. J Arthroplasty 1(3):211–219PubMedCrossRefGoogle Scholar
  2. 2.
    Dennis DA, Komistek RD, Kim RH, Sharma A (2010) Gap balancing versus measured resection technique for total knee arthroplasty. Clin Orthop Relat Res 468:102–107PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res 410:114–130PubMedCrossRefGoogle Scholar
  4. 4.
    Dennis DA, Komistek RD, Walker SA, Cheal EJ, Stiehl JB (2001) Femoral condylar lift-off in vivo in total knee arthroplasty. J Bone Joint Surg Br 83(1):33–39PubMedCrossRefGoogle Scholar
  5. 5.
    D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW Jr (2006) Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty 21(2):255–262PubMedCrossRefGoogle Scholar
  6. 6.
    Fang DM, Ritter MA, Davis KE (2009) Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplasty 24(6 Suppl):39–43PubMedCrossRefGoogle Scholar
  7. 7.
    Garling EH, Kaptein BL, Geleijns K, Nelissen RG, Valstar ER (2005) Marker Configuration Model-Based Roentgen Fluoroscopic Analysis. J Biomech 38(4):893–901PubMedCrossRefGoogle Scholar
  8. 8.
    Hamai S, Miura H, Higaki H, Matsuda S, Shimoto T, Sasaki K, Yoshizumi M, Okazaki K, Tsukamoto N, Iwamoto Y (2008) Kinematic analysis of kneeling in cruciate-retaining and posterior-stabilized total knee arthroplasties. J Orthop Res 26(4):435–442PubMedCrossRefGoogle Scholar
  9. 9.
    Hamai S, Miura H, Higaki H, Shimoto T, Matsuda S, Iwamoto Y (2008) Evaluation of impingement of the anterior tibial post during gait in a posteriorly-stabilised total knee replacement. J Bone Joint Surg Br 90(9):1180–1185PubMedCrossRefGoogle Scholar
  10. 10.
    Hamai S, Miura H, Higaki H, Shimoto T, Matsuda S, Okazaki K, Iwamoto Y (2008) Three-dimensional knee joint kinematics during golf swing and stationary cycling after total knee arthroplasty. J Orthop Res 26(12):1556–1561PubMedCrossRefGoogle Scholar
  11. 11.
    Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14PubMedGoogle Scholar
  12. 12.
    Insall JN, Scuderi GR, Komistek RD, Math K, Dennis DA, Anderson DT (2002) Correlation between condylar lift-off and femoral component alignment. Clin Orthop Relat Res 403:143–152PubMedCrossRefGoogle Scholar
  13. 13.
    Ishii Y, Matsuda Y, Ishii R, Sakata S, Omori G (2003) Coronal laxity in extension in vivo after total knee arthroplasty. J Orthop Sci 8(4):538–542PubMedCrossRefGoogle Scholar
  14. 14.
    Ishii Y, Noguchi H, Matsuda Y, Takeda M, Walker SA, Komistek RD (2007) Effect of knee laxity on in vivo kinematics of meniscal-bearing knee prostheses. Knee 14(4):269–274PubMedCrossRefGoogle Scholar
  15. 15.
    Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73(5):709–714PubMedGoogle Scholar
  16. 16.
    Jennings LM, Bell CI, Ingham E, Komistek RD, Stone MH, Fisher J (2007) The influence of femoral condylar lift-off on the wear of artificial knee joints. Proc Inst Mech Eng H 221(3):305–314PubMedCrossRefGoogle Scholar
  17. 17.
    Kadoya Y, Kobayashi A, Komatsu T, Nakagawa S, Yamano Y (2001) Effects of posterior cruciate ligament resection on the tibiofemoral joint gap. Clin Orthop Relat Res 391:210–217PubMedCrossRefGoogle Scholar
  18. 18.
    Kanekasu K, Banks SA, Honjo S, Nakata O, Kato H (2004) Fluoroscopic analysis of knee arthroplasty kinematics during deep flexion kneeling. J Arthroplasty 19(8):998–1003PubMedCrossRefGoogle Scholar
  19. 19.
    Komistek RD, Scott RD, Dennis DA, Yasgur D, Anderson DT, Hajner ME (2002) In vivo comparison of femorotibial contact positions for press-fit posterior stabilized and posterior cruciate-retaining total knee arthroplasties. J Arthroplasty 17(2):209–216PubMedCrossRefGoogle Scholar
  20. 20.
    Lee DH, Park JH, Song DI, Padhy D, Jeong WK, Han SB (2010) Accuracy of soft tissue balancing in TKA: comparison between navigation-assisted gap balancing and conventional measured resection. Knee Surg Sports Traumatol Arthrosc 18(3):381–387PubMedCrossRefGoogle Scholar
  21. 21.
    Lee SY, Matsui N, Kurosaka M, Komistek RD, Mahfouz M, Dennis DA, Yoshiya S (2005) A posterior-stabilized total knee arthroplasty shows condylar lift-off during deep knee bends. Clin Orthop Relat Res 435:181–184PubMedCrossRefGoogle Scholar
  22. 22.
    Mahaluxmivala J, Bankes MJ, Nicolai P, Aldam CH, Allen PW (2001) The effect of surgeon experience on component positioning in 673 Press Fit Condylar posterior cruciate-sacrificing total knee arthroplasties. J Arthroplasty 16(5):635–640PubMedCrossRefGoogle Scholar
  23. 23.
    Markolf KL, Bargar WL, Shoemaker SC, Amstutz HC (1981) The role of joint load in knee stability. J Bone Joint Surg Am 63(4):570–585PubMedGoogle Scholar
  24. 24.
    Matsuda S, Miura H, Nagamine R, Urabe K, Harimaya K, Matsunobu T, Iwamoto Y (1999) Changes in knee alignment after total knee arthroplasty. J Arthroplasty 14(5):566–570PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuda S, Whiteside LA, White SE (1999) The effect of varus tilt on contact stresses in total knee arthroplasty: a biomechanical study. Orthopedics 22(3):303–307PubMedGoogle Scholar
  26. 26.
    Matsuda Y, Ishii Y (2004) In vivo laxity of low contact stress mobile-bearing prostheses. Clin Orthop Relat Res 419:138–143PubMedCrossRefGoogle Scholar
  27. 27.
    Moro-oka TA, Shiraishi H, Iwamoto Y, Banks SA (2010) Modified gap-balancing technique in total knee arthroplasty: evaluation of the post-operative coronal laxity. Knee Surg Sports Traumatol Arthrosc 18(3):375–380PubMedCrossRefGoogle Scholar
  28. 28.
    Okazaki K, Miura H, Matsuda S, Takeuchi N, Mawatari T, Hashizume M, Iwamoto Y (2006) Asymmetry of mediolateral laxity of the normal knee. J Orthop Sci 11(3):264–266PubMedCrossRefGoogle Scholar
  29. 29.
    Pang HN, Yeo SJ, Chong HC, Chin PL, Ong J, Lo NN (2011) Computer-assisted gap balancing technique improves outcome in total knee arthroplasty, compared with conventional measured resection technique. Knee Surg Sports Traumatol Arthrosc 19(9):1496–1503PubMedCrossRefGoogle Scholar
  30. 30.
    Petersen TL, Engh GA (1988) Radiographic assessment of knee alignment after total knee arthroplasty. J Arthroplasty 3(1):67–72PubMedCrossRefGoogle Scholar
  31. 31.
    Ritter MA, Davis KE, Meding JB, Pierson JL, Berend ME, Malinzak RA (2011) The effect of alignment and BMI on failure of total knee replacement. J Bone Joint Surg Am 93(17):1588–1596PubMedCrossRefGoogle Scholar
  32. 32.
    Sasanuma H, Sekiya H, Takatoku K, Takada H, Sugimoto N, Seo JG (2010) Evaluation of soft-tissue balance during total knee arthroplasty. J Orthop Surg (Hong Kong) 18(1):26–30Google Scholar
  33. 33.
    Seo JG, Moon YW, Park SH, Shim JW, Kim SM (2012) An alternative method to create extramedullary references in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(7):1339–1348PubMedCrossRefGoogle Scholar
  34. 34.
    Schmidt R, Komistek RD, Blaha JD, Penenberg BL, Maloney WJ (2003) Fluoroscopic analyses of cruciate-retaining and medial pivot knee implants. Clin Orthop Relat Res 410:139–147PubMedCrossRefGoogle Scholar
  35. 35.
    Schulz MS, Russe K, Lampakis G, Strobel MJ (2005) Reliability of stress radiography for evaluation of posterior knee laxity. Am J Sports Med 33(4):502–506PubMedCrossRefGoogle Scholar
  36. 36.
    Scuderi GR, Komistek RD, Dennis DA, Insall JN (2003) The impact of femoral component rotational alignment on condylar lift-off. Clin Orthop Relat Res 410:148–154PubMedCrossRefGoogle Scholar
  37. 37.
    Shelburne KB, Torry MR, Pandy MG (2006) Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res 24(10):1983–1990PubMedCrossRefGoogle Scholar
  38. 38.
    Sikorski JM (2008) Alignment in total knee replacement. J Bone Joint Surg Br 90(9):1121–1127PubMedCrossRefGoogle Scholar
  39. 39.
    Stiehl JB, Dennis DA, Komistek RD, Crane HS (1999) In vivo determination of condylar lift-off and screw-home in a mobile-bearing total knee arthroplasty. J Arthroplasty 14(3):293–299PubMedCrossRefGoogle Scholar
  40. 40.
    Stiehl JB, Komistek RD, Haas B, Dennis DA (2001) Frontal plane kinematics after mobile-bearing total knee arthroplasty. Clin Orthop Relat Res 392:56–61PubMedCrossRefGoogle Scholar
  41. 41.
    Wasielewski RC, Galat DD, Komistek RD (2005) Correlation of compartment pressure data from an intraoperative sensing device with postoperative fluoroscopic kinematic results in TKA subjects. J Biomech 38(2):333–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Satoshi Hamai
    • 1
    Email author
  • Hiromasa Miura
    • 2
  • Ken Okazaki
    • 1
  • Takeshi Shimoto
    • 3
  • Hidehiko Higaki
    • 4
  • Yukihide Iwamoto
    • 1
  1. 1.Department of Orthopaedic Surgery, Faculty of Medical SciencesKyushu UniversityHigashi-ku, FukuokaJapan
  2. 2.Department of Orthopaedic Surgery, Graduate School of MedicineEhime UniversityToon, EhimeJapan
  3. 3.Department of Information and Systems Engineering, Faculty of Information EngineeringFukuoka Institute of TechnologyHigashi-ku, FukuokaJapan
  4. 4.Department of Mechanical Engineering, Faculty of EngineeringKyushu Sangyo UniversityHigashi-ku, FukuokaJapan

Personalised recommendations