Effect of suturing the femoral portion of a four-strand graft during an ACL reconstruction

  • Lawrence CamardaEmail author
  • Giuseppe Pitarresi
  • Salvatore Moscadini
  • Giuseppe Marannano
  • Antonino Sanfilippo
  • Michele D’Arienzo



A suture passed along the part of the graft that will be inserted into the femoral tunnel is widely used by surgeons, because it could prevent the graft sliding on the femoral fixation device during pulling from the tibial side. The aim of this study was to evaluate the biomechanical effects of suturing the intratunnel femoral part of the graft during an anterior cruciate ligament (ACL) reconstruction.


Bovine digital extensor tendons and tibias were harvested from 20 fresh-frozen mature bovine knees ranging in age from 18 to 24 months. Quadruple-strand bovine tendons were passed through the tibial tunnel and secured distally with a bioabsorbable interference screw. In one half of all grafts (N = 10), the looped-over part of the graft was sutured in a whipstitch technique over a distance of 30 mm (Group 1). In one half of all grafts (N = 10), the looped-over part was left free from any suture (Group 2). The grafts were preconditioned at 50 N for 10 min, followed by cyclic loading at 1 Hz between 50 N and 250 N for 1,000 cycles. Load-to-failure test was then carried out at a rate of 1 mm/s.


There was no statistically significant difference between mean stiffness at pullout and yield load between the two groups. In all specimens on Group 1, failure occurred following to partial breaking and then slipping of the tendons between the screw and the tunnel. Concerning Group 2, in six cases failure occurred as described for Group 1 specimens. In the remaining four cases, failure occurred entirely through the ligament mid-substance.


Suturing in a whipstitch fashion the femoral portion of the graft doesn’t affect the mechanical proprieties of the ACL graft. When suspension fixation device is used, suturing the looped-over part of the graft could be helpful in order to provide equal tension in all of the strands of the graft at time of tibial fixation.


Anterior cruciate ligament ACL reconstruction Graft properties Biomechanics ACL graft 


  1. 1.
    Ahn JH, Choi SH, Wang JH, Yoo JC, Yim HS, Chang MJ (2011) Outcomes and second-look arthroscopic evaluation after double-bundle anterior cruciate ligament reconstruction with use of a single tibial tunnel. J Bone Jt Surg Am 93:1865–1872CrossRefGoogle Scholar
  2. 2.
    Arneja S, McConkey MO, Mulpuri K, Chin P, Gilbart MK, Regan WD, Leith JM (2009) Graft tensioning in anterior cruciate ligament reconstruction: a systematic review of randomized controlled trials. Arthroscopy 25:200–207PubMedCrossRefGoogle Scholar
  3. 3.
    Bedi A, Musahl V, Steuber V, Kendoff D, Choi D, Allen AA, Pearle AD, Altchek DW (2011) Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy 27:380–390PubMedCrossRefGoogle Scholar
  4. 4.
    Boylan D, Greis PE, West JR, Bachus KN, Burks RT (2003) Effects of initial graft tension on knee stability after anterior cruciate ligament reconstruction using hamstring tendons: a cadaver study. Arthroscopy 19:700–705PubMedCrossRefGoogle Scholar
  5. 5.
    Bravman J, Ishak C, Gelber J, Namkoong S, Jazrawi LM, Kummer FJ (2006) The interaction between the whipstitch sutures of multi-strand ACL grafts and interference screw fixation. Bull Hosp Jt Dis 63:156–157PubMedGoogle Scholar
  6. 6.
    Brown GA, Pena F, Grontvedt T, Labadie D, Engebretsen L (1996) Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 3:238–244PubMedCrossRefGoogle Scholar
  7. 7.
    Charlick DA, Caborn DN (2000) Technical note: alternative soft-tissue graft preparation technique for cruciate ligament reconstruction. Arthroscopy 16:E20PubMedCrossRefGoogle Scholar
  8. 8.
    Coleridge SD, Amis AA (2004) A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:391–397PubMedGoogle Scholar
  9. 9.
    Dargel J, Schmidt-Wiethoff R, Heck M, Bruggemann GP, Koebke J (2008) Comparison of initial fixation properties of sutured and nonsutured soft tissue anterior cruciate ligament grafts with femoral cross-pin fixation. Arthroscopy 24:96–105PubMedCrossRefGoogle Scholar
  10. 10.
    Debandi A, Maeyama A, Lu S, Hume C, Asai S, Goto B, Hoshino Y, Smolinski P, Fu FH (2011) Biomechanical comparison of three anatomic ACL reconstructions in a porcine model. Knee Surg Sports Traumatol Arthrosc 19:728–735PubMedCrossRefGoogle Scholar
  11. 11.
    Donahue TL, Gregersen C, Hull ML, Howell SM (2001) Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. J Biomech Eng 123:162–169PubMedCrossRefGoogle Scholar
  12. 12.
    Einat R, Yoram L (2009) Recruitment viscoelasticity of the tendon. J Biomech Eng 131:111008PubMedCrossRefGoogle Scholar
  13. 13.
    Elias JJ, Rai SP, Ciccone WJ II (2008) In vitro comparison of tension and stiffness between hamstring tendon and patella tendon grafts. J Orthop Res 26:1506–1511PubMedCrossRefGoogle Scholar
  14. 14.
    Figueroa D, Calvo R, Vaisman A, Melean P, Figueroa F (2010) Effect of tendon tensioning: an in vitro study in porcine extensor tendons. Knee 17:245–248PubMedCrossRefGoogle Scholar
  15. 15.
    Fleming BC, Brady MF, Bradley MP, Banerjee R, Hulstyn MJ, Fadale PD (2008) Tibiofemoral compression force differences using laxity- and force-based initial graft tensioning techniques in the anterior cruciate ligament-reconstructed cadaveric knee. Arthroscopy 24:1052–1060PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Jt Surg Am 81:549–557Google Scholar
  17. 17.
    Hayes DA, Watts MC, Tevelen GA, Crawford RW (2005) Central versus peripheral tibial screw placement in hamstring anterior cruciate ligament reconstruction: in vitro biomechanics. Arthroscopy 21:703–706PubMedCrossRefGoogle Scholar
  18. 18.
    Hoher J, Scheffler SU, Withrow JD, Livesay GA, Debski RE, Fu FH, Woo SL (2000) Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. J Orthop Res 18:456–461PubMedCrossRefGoogle Scholar
  19. 19.
    Honl M, Carrero V, Hille E, Schneider E, Morlock MM (2002) Bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction: an in vitro comparison of mechanical behavior under failure tensile loading and cyclic submaximal tensile loading. Am J Sports Med 30:549–557PubMedGoogle Scholar
  20. 20.
    Ishibashi Y, Rudy TW, Livesay GA, Stone JD, Fu FH, Woo SL (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 13:177–182PubMedCrossRefGoogle Scholar
  21. 21.
    Jassem M, Rose AT, Meister K, Indelicato PA, Wheeler D (2001) Biomechanical analysis of the effect of varying suture pitch in tendon graft fixation. Am J Sports Med 29:734–737PubMedGoogle Scholar
  22. 22.
    Krappinger D, Kralinger FS, El Attal R, Hackl W, Haid C (2007) Modified prusik knot versus whipstitch technique for soft tissue fixation in anterior cruciate ligament reconstruction: a biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 15:418–423PubMedCrossRefGoogle Scholar
  23. 23.
    Lubowitz JH, Ahmad CS, Anderson K (2011) All-inside anterior cruciate ligament graft-link technique: second-generation, no-incision anterior cruciate ligament reconstruction. Arthroscopy 27:717–727PubMedCrossRefGoogle Scholar
  24. 24.
    Markolf KL, Gorek JF, Kabo JM, Shapiro MS (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Jt Surg Am 72:557–567Google Scholar
  25. 25.
    Nafei A, Danielsen CC, Linde F, Hvid I (2000) Properties of growing trabecular ovine bone. Part I: mechanical and physical properties. J Bone Jt Surg Br 82:910–920CrossRefGoogle Scholar
  26. 26.
    Noh JH, Yang BG, Roh YH, Kim SW, Kim W (2011) Anterior cruciate ligament reconstruction using 4-strand hamstring autograft: conventional single-bundle technique versus oval-footprint technique. Arthroscopy 27:1502–1510PubMedCrossRefGoogle Scholar
  27. 27.
    Prado M, Martin-Castilla B, Espejo-Reina A, Serrano-Fernandez JM, Perez-Blanca A, Ezquerro F (2013) Close-looped graft suturing improves mechanical properties of interference screw fixation in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21:476–484Google Scholar
  28. 28.
    Prodromos CC, Hecker A, Joyce B, Finkle S, Shi K (2009) Elongation of simulated whipstitch post anterior cruciate ligament reconstruction tibial fixation after cyclic loading. Knee Surg Sports Traumatol Arthrosc 17:914–919PubMedCrossRefGoogle Scholar
  29. 29.
    Scheffler SU, Sudkamp NP, Gockenjan A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–315PubMedCrossRefGoogle Scholar
  30. 30.
    Shino K, Pflaster DS (2000) Comparison of eccentric and concentric screw placement for hamstring graft fixation in the tibial tunnel. Knee Surg Sports Traumatol Arthrosc 8:73–75PubMedCrossRefGoogle Scholar
  31. 31.
    Simonian PT, Harrison SD, Cooley VJ, Escabedo EM, Deneka DA, Larson RV (1997) Assessment of morbidity of semitendinosus and gracilis tendon harvest for ACL reconstruction. Am J Knee Surg 10:54–59PubMedGoogle Scholar
  32. 32.
    Steiner ME, Hecker AT, Brown CH Jr, Hayes WC (1994) Anterior cruciate ligament graft fixation. Comparison of hamstring and patellar tendon grafts. Am J Sports Med 22:240–246PubMedCrossRefGoogle Scholar
  33. 33.
    To JT, Howell SM, Hull ML (1999) Contributions of femoral fixation methods to the stiffness of anterior cruciate ligament replacements at implantation. Arthroscopy 15:379–387PubMedCrossRefGoogle Scholar
  34. 34.
    Weiler A, Windhagen HJ, Raschke MJ, Laumeyer A, Hoffmann RF (1998) Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws. Am J Sports Med 26:119–126PubMedCrossRefGoogle Scholar
  35. 35.
    Weiss JA, Paulos LE (1999) Mechanical testing of ligament fixation devices. Tech Orthop 14:14–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lawrence Camarda
    • 1
    Email author
  • Giuseppe Pitarresi
    • 2
  • Salvatore Moscadini
    • 1
  • Giuseppe Marannano
    • 2
  • Antonino Sanfilippo
    • 1
  • Michele D’Arienzo
    • 1
  1. 1.Department of Orthopaedic SurgeryUniversity of PalermoPalermoItaly
  2. 2.Dipartimento di Ingegneria Chimica, Gestionale, Informatica e Meccanica (DICGIM)University of PalermoPalermoItaly

Personalised recommendations