Migration of “bioabsorbable” screws in ACL repair. How much do we know? A systematic review

  • Hélder M. D. Pereira
  • Vítor M. Correlo
  • Joana Silva-Correia
  • Joaquim M. Oliveira
  • Rui L. Reis CEng
  • João Espregueira-Mendes



Although bioabsorbable screws promise to degrade within months up to several years after implantation, often this does not happen. In fact, other problems such as screw breakage, tunnel enlargement, allergic or foreign body reactions, cyst or abscess formation, and delayed migration of “biodegradable” screws have been reported. This study aims to provide relevant basic science knowledge and recent insights concerning “biomaterials” currently used in fixation devices for anterior cruciate ligament (ACL) repair. A systematic review on the topic of screw “migration” is provided.


A PubMed search combining all the key terms was done looking for complications related to late migration of “bioabsorbable” screws used in ACL reconstruction without inferior time limitation up to January 2012. Only clinical reports were included. Reference lists of reports were checked to detect others not identified by the original search. A pre-publication search was performed to identify the most recent relevant articles.


A total of ten articles referred to migration of “bioabsorbable” interference screws. Most cases reported on poly-L-lactic acid-based screws. Migration was noticed between 3 and 22 months postoperatively. It was noticed both in the tibia and the femur and with the application of several types of graft.


Migration is a possible complication of “bioabsorbable” interference screws. The information related to all clinical implications of the so-called “biodegradable screws” remains scarce and probably suffers from the phenomenon of publication bias. The complexity of possible reactions occurring in the human body is difficult to reproduce under controlled laboratory conditions.

Level of evidence

Systematic review including case-reports, Level V.


ACL Bioabsorbable Interference screw Polylactic acid Polyglycolic acid Migration 


  1. 1.
    Antunes JC, Oliveira JM, Reis RL, Soria JM, Gomez-Ribelles JL, Mano JF (2010) Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity. J Biomed Mater Res A 94(3):856–869PubMedGoogle Scholar
  2. 2.
    Bach FD, Carlier RY, Elis JB, Mompoint DM, Feydy A, Judet O, Beaufils P, Vallee C (2002) Anterior cruciate ligament reconstruction with bioabsorbable polyglycolic acid interference screws: MR imaging follow-up. Radiology 225(2):541–550PubMedCrossRefGoogle Scholar
  3. 3.
    Barber FA, Elrod BF, McGuire DA, Paulos LE (1995) Preliminary results of an absorbable interference screw. Arthroscopy 11(5):537–548PubMedCrossRefGoogle Scholar
  4. 4.
    Baums MH, Zelle BA, Schultz W, Ernstberger T, Klinger HM (2006) Intraarticular migration of a broken biodegradable interference screw after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14(9):865–868PubMedCrossRefGoogle Scholar
  5. 5.
    Benedetto KP, Fellinger M, Lim TE, Passler JM, Schoen JL, Willems WJ (2000) A new bioabsorbable interference screw: preliminary results of a prospective, multicenter, randomized clinical trial. Arthroscopy 16(1):41–48PubMedCrossRefGoogle Scholar
  6. 6.
    Bostman O, Hirvensalo E, Makinen J, Rokkanen P (1990) Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg Br 72(4):592–596PubMedGoogle Scholar
  7. 7.
    Bottoni CR, Deberardino TM, Fester EW, Mitchell D, Penrod BJ (2000) An intra-articular bioabsorbable interference screw mimicking an acute meniscal tear 8 months after an anterior cruciate ligament reconstruction. Arthroscopy 16(4):395–398PubMedCrossRefGoogle Scholar
  8. 8.
    Drogset JO, Grontvedt T, Myhr G (2006) Magnetic resonance imaging analysis of bioabsorbable interference screws used for fixation of bone-patellar tendon-bone autografts in endoscopic reconstruction of the anterior cruciate ligament. Am J Sports Med 34(7):1164–1169PubMedCrossRefGoogle Scholar
  9. 9.
    Drogset JO, Straume LG, Bjorkmo I, Myhr G (2011) A prospective randomized study of ACL-reconstructions using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws. Knee Surg Sports Traumatol Arthrosc 19(5):753–759PubMedCrossRefGoogle Scholar
  10. 10.
    Emond CE, Woelber EB, Kurd SK, Ciccotti MG, Cohen SB (2011) A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws: a meta-analysis. J Bone Joint Surg Am 93(6):572–580PubMedCrossRefGoogle Scholar
  11. 11.
    Ferguson S, Wahl D, Gogolewski S (1996) Enhancement of the mechanical properties of polylactides by solid-state extrusion. II. Poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide). J Biomed Mater Res A 30(4):543–551CrossRefGoogle Scholar
  12. 12.
    Fink C, Benedetto KP, Hackl W, Hoser C, Freund MC, Rieger M (2000) Bioabsorbable polyglyconate interference screw fixation in anterior cruciate ligament reconstruction: a prospective computed tomography-controlled study. Arthroscopy 16(5):491–498PubMedCrossRefGoogle Scholar
  13. 13.
    Friden T, Rydholm U (1992) Severe aseptic synovitis of the knee after biodegradable internal fixation. A case report. Acta Orthop Scand 63(1):94–97CrossRefGoogle Scholar
  14. 14.
    Garrett WEJ, Swiontkowski MF, Weinstein JN, Callaghan J, Rosier RN, Berry DJ, Harrast J, Derosa GP (2006) American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon: Part-II, certification examination case mix. J Bone Joint Surg Am 88(3):660–667PubMedCrossRefGoogle Scholar
  15. 15.
    Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery - polyglycolic/poly (lactic acid) homo- and copolymers: 1. Polymer 20(12):1459–1464CrossRefGoogle Scholar
  16. 16.
    Gobbi A, Francisco R (2006) Factors affecting return to sports after anterior cruciate ligament reconstruction with patellar tendon and hamstring graft: a prospective clinical investigation. Knee Surg Sports Traumatol Arthrosc 14(10):1021–1028PubMedCrossRefGoogle Scholar
  17. 17.
    Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 20(5):1–16Google Scholar
  18. 18.
    Halewood C, Hirschmann MT, Newman S, Hleihil J, Chaimski G, Amis AA (2011) The fixation strength of a novel ACL soft-tissue graft fixation device compared with conventional interference screws: a biomechanical study in vitro. Knee Surg Sports Traumatol Arthrosc 19(4):559–567PubMedCrossRefGoogle Scholar
  19. 19.
    Hall MP, Hergan DM, Sherman OH (2009) Early fracture of a bioabsorbable tibial interference screw after ACL reconstruction with subsequent chondral injury. Orthopedics 32(3):208PubMedCrossRefGoogle Scholar
  20. 20.
    Jarvela T, Moisala AS, Sihvonen R, Jarvela S, Kannus P, Jarvinen M (2008) Double-bundle anterior cruciate ligament reconstruction using hamstring autografts and bioabsorbable interference screw fixation: prospective, randomized, clinical study with 2-year results. Am J Sports Med 36(2):290–297PubMedCrossRefGoogle Scholar
  21. 21.
    Konan S, Haddad FS (2009) A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 16(1):6–13PubMedCrossRefGoogle Scholar
  22. 22.
    Konan S, Haddad FS (2009) The unpredictable material properties of bioabsorbable PLC interference screws and their adverse effects in ACL reconstruction surgery. Knee Surg Sports Traumatol Arthrosc 17(3):293–297PubMedCrossRefGoogle Scholar
  23. 23.
    Konan S, Haddad FS (2010) Femoral fracture following knee ligament reconstruction surgery due to an unpredictable complication of bioabsorbable screw fixation: a case report and review of literature. J Orthop Traumatol 11(1):51–55PubMedCrossRefGoogle Scholar
  24. 24.
    Kontakis GM, Pagkalos JE, Tosounidis TI, Melissas J, Katonis P (2007) Bioabsorbable materials in orthopaedics. Acta Orthop Belg 73(2):159–169PubMedGoogle Scholar
  25. 25.
    Krappel FA, Bauer E, Harland U (2006) The migration of a BioScrew as a differential diagnosis of knee pain, locking after ACL reconstruction: a report of two cases. Arch Orthop Trauma Surg 126(9):615–620PubMedCrossRefGoogle Scholar
  26. 26.
    Lajtai G, Humer K, Aitzetmuller G, Unger F, Noszian I, Orthner E (1999) Serial magnetic resonance imaging evaluation of a bioabsorbable interference screw and the adjacent bone. Arthroscopy 15(5):481–488PubMedCrossRefGoogle Scholar
  27. 27.
    Lajtai G, Noszian I, Humer K, Unger F, Aitzetmuller G, Orthner E (1999) Serial magnetic resonance imaging evaluation of operative site after fixation of patellar tendon graft with bioabsorbable interference screws in anterior cruciate ligament reconstruction. Arthroscopy 15(7):709–718PubMedCrossRefGoogle Scholar
  28. 28.
    Lam CXF, Olkowski R, Swieszkowski W, Tan KC, Gibson I, Hutmacher DW (2008) Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual Phys Prototyping 3(4):193–197CrossRefGoogle Scholar
  29. 29.
    Lembeck B, Wulker N (2005) Severe cartilage damage by broken poly-L-lactic acid (PLLA) interference screw after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 13(4):283–286PubMedCrossRefGoogle Scholar
  30. 30.
    Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH (2004) Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy 20(2):122–128PubMedCrossRefGoogle Scholar
  31. 31.
    Macarini L, Murrone M, Marini S, Mocci A, Ettorre GC (2004) MRI in ACL reconstructive surgery with PDLLA bioabsorbable interference screws: evaluation of degradation and osteointegration processes of bioabsorbable screws. Radiol Med 107(1–2):47–57PubMedGoogle Scholar
  32. 32.
    Macdonald P, Arneja S (2003) Biodegradable screw presents as a loose intra-articular body after anterior cruciate ligament reconstruction. Arthroscopy 19(6):E22–E24PubMedCrossRefGoogle Scholar
  33. 33.
    Maletis GB, Cameron SL, Tengan JJ, Burchette RJ (2007) A prospective randomized study of anterior cruciate ligament reconstruction: a comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med 35(3):384–394PubMedCrossRefGoogle Scholar
  34. 34.
    Malhan K, Kumar A, Rees D (2002) Tibial cyst formation after anterior cruciate ligament reconstruction using a new bioabsorbable screw. Knee 9(1):73–75PubMedCrossRefGoogle Scholar
  35. 35.
    Martinek V, Friederich NF (1999) Tibial and pretibial cyst formation after anterior cruciate ligament reconstruction with bioabsorbable interference screw fixation. Arthroscopy 15(3):317–320PubMedCrossRefGoogle Scholar
  36. 36.
    Middelton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346CrossRefGoogle Scholar
  37. 37.
    Moisala AS, Jarvela T, Paakkala A, Paakkala T, Kannus P, Jarvinen M (2008) Comparison of the bioabsorbable and metal screw fixation after ACL reconstruction with a hamstring autograft in MRI and clinical outcome: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 16(12):1080–1086PubMedCrossRefGoogle Scholar
  38. 38.
    Pena F, Grontvedt T, Brown GA, Aune AK, Engebretsen L (1996) Comparison of failure strength between metallic and absorbable interference screws. Influence of insertion torque, tunnel-bone block gap, bone mineral density, and interference. Am J Sports Med 24(3):329–334PubMedCrossRefGoogle Scholar
  39. 39.
    Piltz S, Strunk P, Meyer L, Plitz W, Lob G (2004) Fixation strength of a novel bioabsorbable expansion bolt for patellar tendon bone graft fixation: an experimental study in calf tibial bone. Knee Surg Sports Traumatol Arthrosc 12(5):376–383PubMedCrossRefGoogle Scholar
  40. 40.
    Radford MJ, Noakes J, Read J, Wood DG (2005) The natural history of a bioabsorbable interference screw used for anterior cruciate ligament reconstruction with a 4-strand hamstring technique. Arthroscopy 21(6):707–710PubMedCrossRefGoogle Scholar
  41. 41.
    Robinson J, Huber C, Jaraj P, Colombet P, Allard M, Meyer P (2006) Reduced bone tunnel enlargement post hamstring ACL reconstruction with poly-L-lactic acid/hydroxyapatite bioabsorbable screws. Knee 13(2):127–131PubMedCrossRefGoogle Scholar
  42. 42.
    Sassmannshausen G, Carr CF (2003) Transcutaneous migration of a tibial bioabsorbable interference screw after anterior cruciate ligament reconstruction. Arthroscopy 19(9):E133–E136PubMedCrossRefGoogle Scholar
  43. 43.
    Sassmannshausen G, Sukay M, Mair SD (2006) Broken or dislodged poly-L-lactic acid bioabsorbable tacks in patients after SLAP lesion surgery. Arthroscopy 22(6):615–619PubMedCrossRefGoogle Scholar
  44. 44.
    Shafer BL, Simonian PT (2002) Broken poly-L-lactic acid interference screw after ligament reconstruction. Arthroscopy 18(7):E35PubMedCrossRefGoogle Scholar
  45. 45.
    Sharma V, Curtis C, Micheli L (2008) Extra-articular extraosseous migration of a bioabsorbable femoral interference screw after ACL reconstruction. Orthopedics 31(10):1040Google Scholar
  46. 46.
    Shen C, Jiang SD, Jiang LS, Dai LY (2010) Bioabsorbable versus metallic interference screw fixation in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials. Arthroscopy 26(5):705–713PubMedCrossRefGoogle Scholar
  47. 47.
    Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27(6):1123–1163CrossRefGoogle Scholar
  48. 48.
    Song F, Parekh S, Hooper L, Loke YK, Ryder J, Sutton AJ, Hing C, Kwok CS, Pang C, Harvey I (2010) Dissemination and publication of research findings: an updated review of related biases. Health Technol Assess 14(8):iii, ix–xi 1–193Google Scholar
  49. 49.
    Stahelin AC, Weiler A, Rufenacht H, Hoffmann R, Geissmann A, Feinstein R (1997) Clinical degradation and biocompatibility of different bioabsorbable interference screws: a report of six cases. Arthroscopy 13(2):238–244PubMedCrossRefGoogle Scholar
  50. 50.
    Tecklenburg K, Burkart P, Hoser C, Rieger M, Fink C (2006) Prospective evaluation of patellar tendon graft fixation in anterior cruciate ligament reconstruction comparing composite bioabsorbable and allograft interference screws. Arthroscopy 22(9):993–999PubMedCrossRefGoogle Scholar
  51. 51.
    Thaunat M, Nourissat G, Gaudin P, Beaufils P (2006) Tibial plateau fracture after anterior cruciate ligament reconstruction: Role of the interference screw resorption in the stress riser effect. Knee 13(3):241–243PubMedCrossRefGoogle Scholar
  52. 52.
    Walsh WR, Cotton NJ, Stephens P, Brunelle JE, Langdown A, Auld J, Vizesi F, Bruce W (2007) Comparison of poly-L-lactide and polylactide carbonate interference screws in an ovine anterior cruciate ligament reconstruction model. Arthroscopy 23(7):757–765PubMedCrossRefGoogle Scholar
  53. 53.
    Warden WH, Chooljian D, Jackson DW (2008) Ten-year magnetic resonance imaging follow-up of bioabsorbable poly-L-lactic acid interference screws after anterior cruciate ligament reconstruction. Arthroscopy 24(3):370.e1–370.e3CrossRefGoogle Scholar
  54. 54.
    Weiler A, Helling HJ, Kirch U, Zirbes TK, Rehm KE (1996) Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: experimental study in sheep. J Bone Joint Surg Br 78(3):369–376PubMedGoogle Scholar
  55. 55.
    Werner A, Wild A, Ilg A, Krauspe R (2002) Secondary intra-articular dislocation of a broken bioabsorbable interference screw after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 10(1):30–32PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hélder M. D. Pereira
    • 1
    • 2
    • 3
    • 4
  • Vítor M. Correlo
    • 1
    • 2
  • Joana Silva-Correia
    • 1
    • 2
  • Joaquim M. Oliveira
    • 1
    • 2
    • 3
  • Rui L. Reis CEng
    • 1
    • 2
    • 3
  • João Espregueira-Mendes
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group—Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineTaipas, GuimarãesPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Saúde Atlântica Sports Center—F.C. Porto StadiumMinho University and Porto UniversityPortoPortugal
  4. 4.Orthopedic Department Centro Hospitalar Póvoa de Varzim—Vila do CondePortoPortugal

Personalised recommendations