Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 22, Issue 1, pp 112–119 | Cite as

Meniscectomy leads to early changes in the mineralization distribution of subchondral bone plate

  • Hermann AnetzbergerEmail author
  • Alexandra Mayer
  • Christian Glaser
  • Stephan Lorenz
  • Christof Birkenmaier
  • Magdalena Müller-Gerbl



It is generally recognized that the subchondral bone plate (SBP) is involved in development of osteoarthritis (OA). However, the pathophysiological significance is not yet clear. The goal of this study is to investigate the extent of the changes that occur in SBP of the tibial plateau in the early stages of experimental OA.


Forty-three female rabbits were assigned to 5 experimental (n = 8 each group) and one sham group (n = 3). OA was induced by medial meniscectomy in the right knee, the left knee served as control. 2, 4, 8, 12, and 24 weeks after meniscectomy, cartilage damage was evaluated, and bone mineral density (BMD) and mineralization distribution of the SBP was measured by computed tomography osteoabsorptiometry (CT-OAM).


Cartilage damage started 2 weeks after meniscectomy with surface roughening. Cartilage defects increased over time. 24 weeks postoperatively, subchondral bone was exposed. As early as 2 weeks after meniscectomy, BMD in the medial tibial plateau decreased significantly. BMD increased again and reached the values of the non-operated knee 12 weeks postoperatively. In addition, already 4 weeks after meniscectomy a significant shift of the densitiy maximum on the medial tibial plateau, which is normally centrally located toward the margin was observed.


In conclusion, the results of this study contribute to the concept of early involvement of the SBP in the development of OA. The hypothesis that changes in the SBP occur simultaneously to cartilage damage was confirmed.


Meniscectomy Subchondral bone Bone mineral density Osteoarthritis 



This study was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG), a non profit organization (grand AM346/1-1).


  1. 1.
    Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints—Part I: tibial surface of the knee. J Biomech Eng 105:216–225PubMedCrossRefGoogle Scholar
  2. 2.
    Anetzberger H, Metak G, Scherer MA, Putz R, Müller-Gerbl M (1995) Anpassung der subchondralen Knochenplatte nach Meniskektomie als Folge einer Änderung der Spannungsverteilung. Osteologie 4:224–232Google Scholar
  3. 3.
    Anetzberger H, Müller-Gerbl M, Scherer MA, Metak G, Blümel G, Putz R (1994) Change in subchondral mineralization after reconstruction of the anterior cruciate ligament of the sheep. Unfallchirurg 97:655–660PubMedGoogle Scholar
  4. 4.
    Anetzberger H, Mayer A, Schulz CU, Müller-Gerbl M (2012) CT-Osteoabsorptiometry is reliable for determination of the subchondral bone mineralization distribution in the rabbit knee. Eur Surg Res 48:208–214PubMedCrossRefGoogle Scholar
  5. 5.
    Behets C, Williams JM, Chappard D, Devogelaer JP, Manicourt DH (2004) Effects of calcitonin on subchondral trabecular bone changes and on osteoarthritic cartilage lesions after acute anterior cruciate ligament deficiency. J Bone Miner Res 19:1821–1826PubMedCrossRefGoogle Scholar
  6. 6.
    Bellido M, Lugo L, Roman-Blas JA, Casteneda S, Caeiro JR, Dapia S, Calvo E, Largo R, Herrero-Beaumont GH (2010) Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthr Res Ther 12:R152CrossRefGoogle Scholar
  7. 7.
    Botter SM, van Osch GJ, Waarsing JH, van der Linden JC, Verhaar JA, Pols HA, van Leeuwen JP, Weinans H (2008) Cartilage damage pattern in relation to subchondral plate thickness in a collagenase-induced model of osteoarthritis. Osteoarthr Cartil 16:506–514PubMedCrossRefGoogle Scholar
  8. 8.
    Boyd SK, Matyas JR, Wohl GR, Kantzas A, Zernicke RF (2000) Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury. J Appl Physiol 89:2359–2364PubMedGoogle Scholar
  9. 9.
    Boyd SK, Müller R, Zernicke RF (2002) Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res 17:687–694PubMedCrossRefGoogle Scholar
  10. 10.
    Carter DR (1987) Mechanical loading history and skeletal biology. J Biomech 20:1095–1109PubMedCrossRefGoogle Scholar
  11. 11.
    Dedrick DK, Goldstein SA, Brandt KD, O’Connor BL, Goulet RW, Albrecht MA (1993) Longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthr Rheum 36:1460–1467CrossRefGoogle Scholar
  12. 12.
    Ding M, Christian Danielsen C, Hvid I (2005) Effects of hyaluronan on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Bone 36:489–501PubMedCrossRefGoogle Scholar
  13. 13.
    Fukubayashi T, Kurosawa H (1980) The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand 51:871–879PubMedCrossRefGoogle Scholar
  14. 14.
    Fukuda Y, Takai S, Yoshino N, Murase K, Tsutsumi S, Ikeuchi K, Hirasawa Y (2000) Impact load transmission of the knee joint-influence of leg alignment and the role of meniscus and articular cartilage. Clin Biomech 15:516–521CrossRefGoogle Scholar
  15. 15.
    Gao J, Messner K (1996) Natural healing of anterior and posterior attachments of the rabbit meniscus. Clin Orthop 328:276–284PubMedCrossRefGoogle Scholar
  16. 16.
    Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20:1055–1061PubMedCrossRefGoogle Scholar
  17. 17.
    Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, le Duong T (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthr Rheum 50:1193–1206CrossRefGoogle Scholar
  18. 18.
    Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong LT (2006) Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38:234–243PubMedCrossRefGoogle Scholar
  19. 19.
    Intema F, Hazewinkel HA, Gouwens D, Bijlsma JW, Weinans H, Lafeber FP, Mastbergen SC (2010) In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. Osteoarthr Cartil 18:691–698PubMedCrossRefGoogle Scholar
  20. 20.
    Kuhn JL, Goulet RW, Pappas M, Goldstein SA (1990) Morphometric and anisotropic symmetries of the canine distal femur. J Orthop Res 8:776–780PubMedCrossRefGoogle Scholar
  21. 21.
    Kummer B (1985) Kausale Histogenese der Gewebe des Bewegungsapparates und funktionelle Anpassung. In: SJ München (ed) Benninghof Anatomie Bd. 1. Urban and Schwarzenberg, pp 199–213Google Scholar
  22. 22.
    Kummer B (1994) Biomechanik des Meniskus. Orthopäde 23:90–102PubMedGoogle Scholar
  23. 23.
    Meachim G (1972) Light microscopy of Indian ink preparations of fibrillated cartilage. Ann Rheum Dis 31:457–464PubMedCrossRefGoogle Scholar
  24. 24.
    Messner K, Fahlgren A, Ross I, Andersson B (2000) Simultaneous changes in bone mineral density and articular cartilage in a rabbit meniscectomy model of knee osteoarthrosis. Osteoarthr Cartil 8:197–206PubMedCrossRefGoogle Scholar
  25. 25.
    Müller-Gerbl M (1998) The subchondral bone plate. Adv Anat Embryol Cell Biol 141:111–134Google Scholar
  26. 26.
    Orford CR, Gardner DL, O’Connor P (1983) Ultrastructural changes in dog femoral condylar cartilage following anterior cruciate ligament section. J Anat 137:653–663PubMedGoogle Scholar
  27. 27.
    Pauwels F (1965) Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. Z Anat Entwickl-Gesch 478–515Google Scholar
  28. 28.
    Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop 213:34–40PubMedGoogle Scholar
  29. 29.
    Shymkiw RC, Bray RC, Boyd SK, Kantzas A, Zernicke RF (2001) Physiological and mechanical adaptation of periarticular cancellous bone after joint ligament injury. J Appl Physiol 90:1083–1087PubMedGoogle Scholar
  30. 30.
    Sniekers YH, Weinans H, van Osch GJVM, van Leeuwen JPTM (2010) Oestrogen is important for maintenance of cartilage and subchondral bone in a murine model of knee osteoarthritis. Arthr Res Ther 12:R182CrossRefGoogle Scholar
  31. 31.
    Wang SX, Laverty S, Dumitriu M, Plaas A, Grynpas MD (2007) The effects of glucosamine hydrochloide on subchondral bone changes in a animal model of osteoarthritis. Arthr Rheum 56:1537–1548CrossRefGoogle Scholar
  32. 32.
    Zhang L, Hu H, Tian F, Song H, Zhang Y (2011) Enhancement of subchondral bone quality by alendronate administration for the reduction of cartilage degeneration in the early phase of experimental osteoarthritis. Clin Exp Med 11:235–243PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hermann Anetzberger
    • 1
    Email author
  • Alexandra Mayer
    • 2
  • Christian Glaser
    • 3
  • Stephan Lorenz
    • 4
  • Christof Birkenmaier
    • 5
  • Magdalena Müller-Gerbl
    • 6
  1. 1.Orthopädische Gemeinschaftspraxis am OEZMunichGermany
  2. 2.Klinikum Bogenhausen, Abteilung Physikalische Medizin und FrührehabilitationMunichGermany
  3. 3.Department of RadiologyLudwig-Maximilian-UniversityMunichGermany
  4. 4.Department of Orthopaedic Sports MedicineTechnical University of MunichMunichGermany
  5. 5.Department of OrthopaedicsLudwig-Maximilian-University MunichMunichGermany
  6. 6.Institute of AnatomyBaselSwitzerland

Personalised recommendations