Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 22, Issue 11, pp 2599–2607 | Cite as

Evidence of trochlear dysplasia in femoral component designs

  • David Dejour
  • Panagiotis G. Ntagiopoulos
  • Mohammed Saffarini



The study aimed to compare trochlear profiles of various total knee arthroplasty (TKA) models to anatomic profiles observed in healthy and pathologic knees and to evaluate trochlear designs against radiologic indicators for PF disorders and trochlear dysplasia.


The trochlear profiles of 14 different TKA models were digitized using a coordinate measurement machine at various flexion angles (0°, 15°, 30° and 45°) to deduce the following variables: sulcus angle, trochlear groove orientation, height of lateral facet, and mediolateral groove position. The effect of externally rotating the femoral component on those variables was simulated.


The sulcus angle was greater than the indicators for trochlear dysplasia of 144° in 11 implants at 45° flexion, and in 13 implants at 30° flexion. The lateral facet height was less than average anatomic values of 5 mm in eight specimens through the entire range of early flexion (0°–30°). The trochlear groove was oriented laterally in 13 specimens (3.3°–11.7°) and was vertical in one specimen (0.3°). Applying an external rotation up to 6° resulted in noticeable lateral translation of the trochlear groove and facets, but negligible posterior translation.


The study presented a detailed description of previously overlooked TKA design parameters and revealed that some femoral components exhibit characteristics of trochlear dysplasia. The clinical relevance of this descriptive study is that surgeons should be aware of such design limitations to improve choice of implant for patients with history of PF disorders and to adapt surgical techniques as necessary to optimize PF tracking.

Level of evidence

Case–control study, Level III.


Total knee arthroplasty component design Femoral trochlea Trochlear dysplasia 


  1. 1.
    Aglietti P, Buzzi R, Gaudenzi A (1988) Patellofemoral functional results and complications with the posterior stabilized total condylar knee prosthesis. J Arthroplast 1:17–25CrossRefGoogle Scholar
  2. 2.
    Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc 2:48–56CrossRefGoogle Scholar
  3. 3.
    Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT (1993) The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop Relat Res 287:170–177PubMedGoogle Scholar
  4. 4.
    Arendt E (2005) Anatomy and malalignment of the patellofemoral joint: its relation to patellofemoral arthrosis. Clin Orthop Relat Res 436:71–75PubMedCrossRefGoogle Scholar
  5. 5.
    Balcarek P, Ammon J, Frosch S, Walde TA, Schuttrumpf JP, Ferlemann KG, Lill H, Sturmer KM, Frosch KH (2010) Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy 7:926–935CrossRefGoogle Scholar
  6. 6.
    Barink M, van de Groes S, Verdonschot N, de Waal Malefijt M (2003) The trochlea is bilinear and oriented medially. Clin Orthop Relat Res 411:288–295PubMedCrossRefGoogle Scholar
  7. 7.
    Barink M, Van de Groes S, Verdonschot N, De Waal Malefijt M (2006) The difference in trochlear orientation between the natural knee and current prosthetic knee designs; towards a truly physiological prosthetic groove orientation. J Biomech 9:1708–1715CrossRefGoogle Scholar
  8. 8.
    Barink M, Meijerink H, Verdonschot N, van Kampen A, de Waal Malefijt M (2007) Asymmetrical total knee arthroplasty does not improve patella tracking: a study without patella resurfacing. Knee Surg Sports Traumatol Arthrosc 2:184–191CrossRefGoogle Scholar
  9. 9.
    Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47PubMedGoogle Scholar
  10. 10.
    Bicos J, Fulkerson JP, Amis A (2007) Current concepts review: the medial patellofemoral ligament. Am J Sports Med 3:484–492Google Scholar
  11. 11.
    Brattstroem H (1964) Shape of the intercondylar groove normally and in recurrent dislocation of patella. A clinical and X-ray-anatomical investigation. Acta Orthop Scand Suppl 68:61–148Google Scholar
  12. 12.
    Davies AP, Costa ML, Shepstone L, Glasgow MM, Donell S (2000) The sulcus angle and malalignment of the extensor mechanism of the knee. J Bone Joint Surg Br 8:1162–1166CrossRefGoogle Scholar
  13. 13.
    Dejour D, Le Coultre B (2007) Osteotomies in patello-femoral instabilities. Sports Med Arthrosc 1:39–46CrossRefGoogle Scholar
  14. 14.
    Dejour D, Saggin P (2010) The sulcus deepening trochleoplasty-the Lyon’s procedure. Int Orthop 2:311–316CrossRefGoogle Scholar
  15. 15.
    Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 1:19–26CrossRefGoogle Scholar
  16. 16.
    Eckhoff DG, Burke BJ, Dwyer TF, Pring ME, Spitzer VM, VanGerwen DP (1996) The ranawat award. sulcus morphology of the distal femur. Clin Orthop Relat Res 331:23–28PubMedCrossRefGoogle Scholar
  17. 17.
    Eckhoff DG, Montgomery WK, Stamm ER, Kilcoyne RF (1996) Location of the femoral sulcus in the osteoarthritic knee. J Arthroplast 2:163–165CrossRefGoogle Scholar
  18. 18.
    Feinstein WK, Noble PC, Kamaric E, Tullos HS (1996) Anatomic alignment of the patellar groove. Clin Orthop Relat Res 331:64–73PubMedCrossRefGoogle Scholar
  19. 19.
    Fucentese SF, Schottle PB, Pfirrmann CW, Romero J (2007) CT changes after trochleoplasty for symptomatic trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc 2:168–174CrossRefGoogle Scholar
  20. 20.
    Grelsamer RP (1997) Patellofemoral complications following total knee arthroplasty. J Arthroplast 2:216CrossRefGoogle Scholar
  21. 21.
    Grelsamer RP (2001) The sulcus angle and malalignment of the extensor mechanism of the knee. J Bone Joint Surg Br 5:772–773Google Scholar
  22. 22.
    Healy WL, Wasilewski SA, Takei R, Oberlander M (1995) Patellofemoral complications following total knee arthroplasty. Correlation with implant design and patient risk factors. J Arthroplast 2:197–201CrossRefGoogle Scholar
  23. 23.
    Indelli PF, Marcucci M, Cariello D, Poli P, Innocenti M (2012) Contemporary femoral designs in total knee arthroplasty: effects on the patello-femoral congruence. Int Orthop 6:1167–1173CrossRefGoogle Scholar
  24. 24.
    Iranpour F, Merican AM, Dandachli W, Amis AA, Cobb JP (2010) The geometry of the trochlear groove. Clin Orthop Relat Res 3:782–788CrossRefGoogle Scholar
  25. 25.
    Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2000) The patellofemoral joint in total knee arthroplasty: is the design of the trochlea the critical factor? J Arthroplast 4:424–429CrossRefGoogle Scholar
  26. 26.
    Kulkarni SK, Freeman MA, Poal-Manresa JC, Asencio JI, Rodriguez JJ (2001) The patello-femoral joint in total knee arthroplasty: is the design of the trochlea the critical factor? Knee Surg Sports Traumatol Arthrosc 9 Suppl 1:S8–S12Google Scholar
  27. 27.
    Martinez S, Korobkin M, Fondren FB, Hedlund LW, Goldner JL (1983) Computed tomography of the normal patellofemoral joint. Invest Radiol 3:249–253CrossRefGoogle Scholar
  28. 28.
    Meijerink HJ, Barink M, van Loon CJ, Schwering PJ, Donk RD, Verdonschot N, de Waal Malefijt MC (2007) The trochlea is medialized by total knee arthroplasty: an intraoperative assessment in 61 patients. Acta Orthop 1:123–127CrossRefGoogle Scholar
  29. 29.
    Merchant AC, Mercer RL, Jacobsen RH, Cool CR (1974) Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am 7:1391–1396Google Scholar
  30. 30.
    Merchant AC (1997) Femoral sulcus angle measurements. Am J Orthop (Belle Mead NJ) 12(820):822Google Scholar
  31. 31.
    Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 9:1479–1487CrossRefGoogle Scholar
  32. 32.
    Mulligan ME, Jones ED Jr (1997) Femoral sulcus angle measurements. Am J Orthop (Belle Mead NJ) 8:541–543Google Scholar
  33. 33.
    Olcott CW, Scott RD (2000) Determining proper femoral component rotational alignment during total knee arthroplasty. Am J Knee Surg 3:166–168Google Scholar
  34. 34.
    Ostermeier S, Buhrmester O, Hurschler C, Stukenborg-Colsman C (2005) Dynamic in vitro measurement of patellar movement after total knee arthroplasty: an in vitro study. BMC Musculoskelet Disord 6:30Google Scholar
  35. 35.
    Panni AS, Cerciello S, Maffulli N, Di Cesare M, Servien E, Neyret P (2011) Patellar shape can be a predisposing factor in patellar instability. Knee Surg Sports Traumatol Arthrosc 4:663–670CrossRefGoogle Scholar
  36. 36.
    Patel J, Ries MD, Bozic KJ (2008) Extensor mechanism complications after total knee arthroplasty. Instr Course Lect 57:283–294Google Scholar
  37. 37.
    Petersilge WJ, Oishi CS, Kaufman KR, Irby SE, Colwell CW Jr (1994) The effect of trochlear design on patellofemoral shear and compressive forces in total knee arthroplasty. Clin Orthop Relat Res 309:124–130PubMedGoogle Scholar
  38. 38.
    Petri M, von Falck C, Broese M, Liodakis E, Balcarek P, Niemeyer P, Hofmeister M, Krettek C, Voigt C, Haasper C, Zeichen J, Frosch KH, Lill H, Jagodzinski M (2012) Influence of rupture patterns of the medial patellofemoral ligament (MPFL) on the outcome after operative treatment of traumatic patellar dislocation. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-012-2037-z
  39. 39.
    Shih YF, Bull AM, Amis AA (2004) The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surg Sports Traumatol Arthrosc 4:300–306Google Scholar
  40. 40.
    Tanzer M, McLean CA, Laxer E, Casey J, Ahmed AM (2001) Effect of femoral component designs on the contact and tracking characteristics of the unresurfaced patella in total knee arthroplasty. Can J Surg 2:127–133Google Scholar
  41. 41.
    Tecklenburg K, Dejour D, Hoser C, Fink C (2006) Bony and cartilaginous anatomy of the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 3:235–240CrossRefGoogle Scholar
  42. 42.
    Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G (2009) Gender differences in trochlear groove orientation and rotational kinematics of human knees. J Orthop Res 7:871–878CrossRefGoogle Scholar
  43. 43.
    Varadarajan KM, Freiberg AA, Gill TJ, Rubash HE, Li G (2010) Relationship between three-dimensional geometry of the trochlear groove and in vivo patellar tracking during weight-bearing knee flexion. J Biomech Eng 6:061008CrossRefGoogle Scholar
  44. 44.
    Varadarajan KM, Rubash HE, Li G (2011) Are current total knee arthroplasty implants designed to restore normal trochlear groove anatomy? J Arthroplast 2:274–281CrossRefGoogle Scholar
  45. 45.
    Yoshioka Y, Siu D, Cooke TD (1987) The anatomy and functional axes of the femur. J Bone Joint Surg Am 6:873–880Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Dejour
    • 1
  • Panagiotis G. Ntagiopoulos
    • 1
  • Mohammed Saffarini
    • 2
  1. 1.Lyon-Ortho-ClinicClinique de la SauvegardeLyonFrance
  2. 2.Department of Research and DevelopmentTornier SASaint-IsmierFrance

Personalised recommendations