Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 21, Issue 8, pp 1813–1818 | Cite as

Distribution of vitamin K2 in subchondral bone in osteoarthritic knee joints

  • Yoshinori IshiiEmail author
  • Hideo Noguchi
  • Mitsuhiro Takeda
  • Junko Sato
  • Noriaki Yamamoto
  • Hiroyuki Wakabayashi
  • Junkichi Kanda
  • Shin-ichi Toyabe
Experimental Study

Abstract

Purpose

Vitamin K may have multiple effects on articular cartilage and subchondral bone that could modulate the pathogenesis of osteoarthritis (OA). The purpose of this study was to evaluate the distribution of vitamin K2 in harvested bones obtained during total knee arthroplasty in knee OA patients.

Methods

High-performance liquid chromatography was used to measure vitamin K2 in harvested bones obtained during 58 TKA procedures. Vitamin K2 levels were analysed in the medial (FM) and lateral (FL) femoral condyles and in the medial (TM) and lateral (TL) tibial condyles.

Results

There was significantly more vitamin K2 in the lateral femoral and tibial condyles than in the corresponding medial condyles (FL vs. FM, p < 0.0001; TL vs. TM, p < 0.0001). There was significantly more vitamin K2 in the FL than in the TL (p = 0.003), and in the FM, vitamin K2 levels were higher than those of the TM, although this was not significant (n.s.). There were no significant differences in vitamin K2 levels in men versus women nor was there a significant correlation with age.

Conclusions

This study suggested that vitamin K2 might affect bone turnover since medial condyles showing advanced OA had lower vitamin K2 levels, while lateral condyles showing less advanced OA contained more vitamin K2. Gender and age were not correlated with vitamin K2 localization. All cases had Grade IV OA, and this study suggested that OA grade might be important in controlling the vitamin K2 levels in human bones.

Keywords

Vitamin K2 High-performance liquid chromatography Subchondral bone Osteoarthritis knee joint Total knee arthroplasty 

References

  1. 1.
    Alicea J (2001) Scoring systems and their validation for the arthritic knee. In: Insall JN, Scott WN (eds) Surgery of the knee, vol 2. Churchill Livingstone, New York, pp 1507–1515Google Scholar
  2. 2.
    Bailey AJ, Mansell JP (1997) Do subchondral bone changes exacerbate or precede articular cartilage destruction in osteoarthritis of the elderly? Gerontology 43:296–304PubMedCrossRefGoogle Scholar
  3. 3.
    Bettica P, Cline G, Hart DJ, Meyer J, Spector TD (2002) Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum 46:3178–3184PubMedCrossRefGoogle Scholar
  4. 4.
    Booth SL, Broe KE, Peterson JW, Cheng DM, Dawson-Hughes B, Gundberg CM, Cupples LA, Wilson PW, Kiel DP (2004) Associations between vitamin K biochemical measures and bone mineral density in men and women. J Clin Endocrinol Metab 89:4904–4909PubMedCrossRefGoogle Scholar
  5. 5.
    Burr DB (1998) The importance of subchondral bone in osteoarthrosis. Curr Opin Rheumatol 10:256–262PubMedCrossRefGoogle Scholar
  6. 6.
    Burr DB, Schaffler MB (1997) The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech 37:343–357PubMedCrossRefGoogle Scholar
  7. 7.
    Carbone LD, Nevitt MC, Wildy K, Barrow KD, Harris F, Felson D, Peterfy C, Visser M, Harris TB, Wang BWE, Kritchevsky SB (2004) The relationship of antiresorptive drug use to structural findings and symptoms of knee osteoarthritis. Arthritis Rheum 50:3516–3525PubMedCrossRefGoogle Scholar
  8. 8.
    Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody SG, Torgerson DJ (2006) Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 166:1256–1261PubMedCrossRefGoogle Scholar
  9. 9.
    Ding M, Odgaad A, Hvid I (2003) Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br 85:906–911PubMedGoogle Scholar
  10. 10.
    Hayami T, Pickarski M, Wesolowski GA, Mclane J, Bone A, Destefano J, Rodan GA, Duong LT (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation be alendronate in the rat anterior cruciate ligament trisection model. Arthritis Rheum 50:1193–1206PubMedCrossRefGoogle Scholar
  11. 11.
    Iwamoto J, Seki A, Sato Y, Matsumoto H, Takeda T, Yeh JK (2011) Vitamin K2 prevents hyperglycemia and cancellous osteopenia in rats with streptozocin-induced type 1 diabetes. Calcif Tissue Int 88:162–168PubMedCrossRefGoogle Scholar
  12. 12.
    Iwamoto J, Takeda T, Yeh JK, Ichimura S, Toyama Y (2003) Effect of vitamin K2 on cortical and cancellous bones in orchidectomized young rats. Maturitas 44:19–27PubMedCrossRefGoogle Scholar
  13. 13.
    Kamibayashi L, Wyss UP, Cooke TZ, Zee B (1995) Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 17:27–35PubMedCrossRefGoogle Scholar
  14. 14.
    Kellgren JH, Lawrence JS (1957) Radiographical assessment of osteoarthritis. Ann Rheum Dis 16:494–501PubMedCrossRefGoogle Scholar
  15. 15.
    Knapen MHJ, Schurgers LJ, Verner C (2007) Vitamin K2 supplementation improves hip bone geometry and bone strength indices in postmenopausal women. Osteoporos Int 18:963–972PubMedCrossRefGoogle Scholar
  16. 16.
    Li B, Aspden RM (1997) Mechanism and material properties of the subchondral bone plate from the femoral neck of patients with osteoarthritis. Ann Rheum Dis 56:247–254PubMedCrossRefGoogle Scholar
  17. 17.
    Matsui H, Shimizu M, Tsuji H (1997) Cartilage and subchondral bone interaction in osteoarthrosis of human knee joint: a histological and histomorphometric study. Microsc Res Tech 37:333–342PubMedCrossRefGoogle Scholar
  18. 18.
    Mawatari T, Miura H, Higaki H, Moro-oka T, Kurata K, Murakami T, Iwamoto Y (2000) Effect of vitamin K2 on three-dimensional trabecular microarchitecture in ovariectomized rats. J Bone Miner Res 15:1810–1817PubMedCrossRefGoogle Scholar
  19. 19.
    Miki T, Nakatsuka K, Naka H, Kitatani K, Saito S, Masaki H, Tomiyoshi Y, Mori H, Nishizawa Y (2003) Vitamin K 2 (menaquinone 4) reduces serum undercarboxylated osteocalcin level as early as 2 weeks in elderly women with established osteoporosis. J Bone Miner Metab 21:161–165PubMedCrossRefGoogle Scholar
  20. 20.
    Neogi T, Booth SL, Zhang YQ, Jacques PF, Terkeltaub R, Aliabadi P, Felson DT (2006) Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum 54:1255–1261PubMedCrossRefGoogle Scholar
  21. 21.
    Oka H, Akune T, Muraki S, En-yo Y, Yoshida M, Saika A, Sasaki S, Nakamura K, Kawaguchi H, Yoshimura N (2009) Association of low dietary vitamin K intake with radiographic knee osteoarthritis in Japanese elderly population: dietary survey in a population-based cohort of the ROAD study. J Orthop Sci 14:687–692PubMedCrossRefGoogle Scholar
  22. 22.
    Ozuru R, Sugimoto T, Yamaguchi T, Chihara K (2002) Time-dependent effects of vitamin K2 (mentetrenone) on bone metabolism in postmenopausal women. Endocr J 49:363–370PubMedCrossRefGoogle Scholar
  23. 23.
    Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40PubMedGoogle Scholar
  24. 24.
    Ronden JE, Thijssen HH, Vermeer C (1998) Tissue distribution of K-vitamers under different nutritional regimens in the rat. Biochim Biophys Acta 1379:16–22PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenberg TD, Paulos LE, Paker RD, Coward DB, Scott SM (1988) The forty-five-degree posteroanterior flexion weight-bearing radiograph of the knee. J Bone Joint Surg Am 70:1479–1483PubMedGoogle Scholar
  26. 26.
    Schurgers LJ, Teunissen KJ, Hamuyák K, Knapen MHJ, Vermeer C (2007) Vitamin k-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood 109:3279–3283PubMedCrossRefGoogle Scholar
  27. 27.
    Schurgers LJ, Vermeer C (2000) Determination of phylloquinone and menaquinones in food: effect of food matrix on circulating vitamin K concentrations. Haemostasis 30:298–307PubMedGoogle Scholar
  28. 28.
    Shiraki M, Shiraki Y, Aoki C, Miura M (2000) Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone density in osteoporosis. J Bone Miner Res 15:515–521PubMedCrossRefGoogle Scholar
  29. 29.
    Tanaka S, Nakamura K, Onishi H, Miura M, Hijioka A, Kanazawa Y, Nishida S, Ikeda S, Nakamura T (2011) Lower osteocalcin and osteopontin contents of the femoral head in hip fracture patients than osteoarthritis patients. Osteoporos Int 22:587–597PubMedCrossRefGoogle Scholar
  30. 30.
    Thijssen HHW, Drittij-Reijnders MJ (1994) Vitamin K distribution in rat tissue: dietary phylloquinone is a source of tissue menaquinone-4. Br J Nutr 72:415–425PubMedCrossRefGoogle Scholar
  31. 31.
    Thijssen HHW, Drittij-Reijnders MJ (1996) Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinon-4. Br J Nutr 75:121–127PubMedCrossRefGoogle Scholar
  32. 32.
    Wakabayashi H, Onodera K, Yamato S, Shimada K (2003) Simultaneous determination of vitamin K analogs in human serum by sensitive and selective high-performance liquid chromatography with electrochemical detection. Nutrition 19:661–665PubMedCrossRefGoogle Scholar
  33. 33.
    Yamaguchi M, Kakuda H, Gao YH, Tsukamoto Y (2000) Prolonged intake of fermented soybean (natto) diets containing vitamin k2 (menaquinone-7) prevents bone loss in ovariectomized rats. J Bone Miner Metab 18:71–76PubMedCrossRefGoogle Scholar
  34. 34.
    Yamaguchi M, Taguchi H, Gao YH, Igarashi A, Tsukamoto Y (1999) Effect of vitamin K2 (menaquinone-7) in fermented soybean (natto) on bone loss in ovariectomized rats. J Bone Miner Metab 17:23–29PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yoshinori Ishii
    • 1
    Email author
  • Hideo Noguchi
    • 1
  • Mitsuhiro Takeda
    • 1
  • Junko Sato
    • 1
  • Noriaki Yamamoto
    • 2
  • Hiroyuki Wakabayashi
    • 3
  • Junkichi Kanda
    • 3
  • Shin-ichi Toyabe
    • 4
  1. 1.Ishii Orthopaedic and Rehabilitation ClinicGyodaJapan
  2. 2.Niigata Rehabilitation HospitalNiigataJapan
  3. 3.Niigata University of Pharmacy and Applied Life SciencesNiigataJapan
  4. 4.Department of Medical InformaticsNiigata University Medical and Dental HospitalNiigataJapan

Personalised recommendations