Advertisement

Assessment of functional performance after anterior cruciate ligament reconstruction: a systematic review of measurement procedures

  • Nicky Engelen-van MelickEmail author
  • Robert E. H. van Cingel
  • Marsha P. W. Tijssen
  • Maria W. G. Nijhuis-van der Sanden
Knee

Abstract

Purpose

The purpose of this systematic review was to identify the measurements that are used in clinical practice to assess the quantity and quality of functional performance in men and women more than 2 years after ACL reconstruction with bone patellar-tendon bone (BPTB) or semitendinosus/gracilis (STG) graft.

Methods

A systematic literature search was performed in Medline (Pubmed), EMBASE (OVID), the Cochrane Library and PEDro to identify relevant articles from 1990 up to 2010. Articles were included if they described functional performance after BPTB or STG reconstruction and had a follow-up of more than 2 years. Two authors screened the selected articles for title, abstract and full-text in accordance with predefined inclusion and exclusion criteria. The methodological quality of all articles was assessed by checklists of the Cochrane Library by two authors. Only the articles with good methodological quality were considered for further analysis.

Results

A total of 27 studies were included by full-text. According to their methodological quality six were rated as good. Different authors used different study designs for muscle testing which led to different outcomes that could not be compared. Besides strength, a single-leg hop for distance was used as a measurement for quantity of functional performance. No measurements for quality of functional performance were reported.

Conclusions

Measurement of functional performance more than 2 years after ACL reconstruction consists of concentric or isometric strength, the single-leg hop for distance or a combination. The Limb Symmetry Index is used as the main outcome parameter to compare the involved leg with the uninvolved. In all studies the results of men and woman are combined. Based on our findings and previous studies that discussed additional important parameters a more extensive test battery to assess functional performance is suggested.

Level of evidence

III.

Keywords

ACL reconstruction Follow-up measurement Functional performance 

Notes

Conflict interest

The authors declare that they have no competing interests.

References

  1. 1.
    Ageberg E (2002) Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation: using the anterior cruciate ligament-injured knee as model. J Electromyogr Kinesiol 12:205–212PubMedCrossRefGoogle Scholar
  2. 2.
    Ageberg E, Roos HP, Silbernagel KG et al (2009) Knee extension and flexion muscle power after anterior cruciate ligament reconstruction with patellar tendon graf tor hamstring tendons graft: a cross-sectional comparison 3 years post surgery. Knee Surg Sports Traumatol Arthrosc 17(2):162–169PubMedCrossRefGoogle Scholar
  3. 3.
    Alentorn-Geli E, Myer GD, Silvers HJ et al (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surg Sports Traumatol Arthrosc 17:859–879PubMedCrossRefGoogle Scholar
  4. 4.
    Ardern CL, Webster KE, Taylor NF et al (2011) Return to sport following anterior cruciate ligament reconstruction surgery: a systematich review and meta-analysis of the state of play. Br J Sports Med. doi: 10.1136/bjsm.2010.076364 PubMedGoogle Scholar
  5. 5.
    Asik M, Sen C, Tuncay I et al (2007) The mid- to long-term results of the anterior cruciate ligament reconstruction with hamstring tendons using transfix technique. Knee Surg Sports Traumatol Arthrosc 15(8):965–972PubMedCrossRefGoogle Scholar
  6. 6.
    Barber SD, Noyes FR, Mangine RE et al (1990) Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res 255:204–214PubMedGoogle Scholar
  7. 7.
    Barber SD, Noyes FR, Mangine RE et al (1992) Rehabilitation after ACL reconstruction: function testing. Orthopedics 15(8):969–974PubMedGoogle Scholar
  8. 8.
    Barenius B, Nordlander M, Ponzer S et al (2010) Quality of life and clinical outcome after anterior cruciate ligament reconstruction using patellar tendon graf tor quadrupled semitendinosus graft. An 8-year follow-up of a randomized controlled trial. Am J Sports Med 38(8):1533–1541PubMedCrossRefGoogle Scholar
  9. 9.
    Bencke J, Zebis MK (2011) The influence of gender on neuromuscular pre-activity during side-cutting. J Electromyogr Kinesiol 21(2):371–375PubMedCrossRefGoogle Scholar
  10. 10.
    Bennett DR, Blackburn JT, Boling MC et al (2008) The relationship between anterior tibial shear force during a jump landing task and quadriceps and hamstring strength. Clin Biomech 23(9):1165–1171CrossRefGoogle Scholar
  11. 11.
    Beynnon BD, Johnson RJ, Fleming BC et al (2002) Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. J Bone Joint Surg Am 84A(9):1503–1513Google Scholar
  12. 12.
    Bizzini M, Sensomotorische Rehabilitation nach Beinverletzungen (2000) Mit Fallbeispielen in allen Heilungsstadien. In: Dvorak J, Junge A (eds) F-Marc football medicine manual. FIFA, ZurichGoogle Scholar
  13. 13.
    Brandsson S, Kartus J, Larsson J et al (2000) A comparison of results in middle-aged and young patients after anterior cruciate ligament reconstruction. Arthroscopy 16(2):178–182PubMedCrossRefGoogle Scholar
  14. 14.
    Che Tin Li R, Wu Y, Maffuli N, Ming Chan K, Chan JLC (1996) Eccentric and concentric isokinetic knee flexion and extension: a reliability study using the Cybex 6000 dynamometer. Br J Sports Med 30:156–160CrossRefGoogle Scholar
  15. 15.
    Chumanov ES, Heiderscheit BC, Thelen DG (2011) Hamstring musculotendon dynamics during stance and swing phases of high speed running. Med Sci Sports Exerc 43(3):525–532PubMedCrossRefGoogle Scholar
  16. 16.
    Cometti G, Maffiuletti NA, Pousson M et al (2001) Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int J Sports Med 22(1):45–51PubMedCrossRefGoogle Scholar
  17. 17.
    Ekegren CL, Miller WC, Celebrini RG et al (2009) Reliability and validity of observational risk screening in evaluating dynamic knee valgus. J Orthop Sports Phys Ther 39(9):665–674PubMedGoogle Scholar
  18. 18.
    Elmlinger BS, Nyland JA, Tillett ED (2006) Knee flexor function 2 years after anterior cruciate ligament reconstruction with semitendinosus-gracilis autografts. Arthroscopy 22(6):650–655PubMedCrossRefGoogle Scholar
  19. 19.
    Eriksson K, Anderberg P, Hamberg P et al (2001) A comparison of quadruple semitendinosus and patellar tendon grafts in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 83B(3):348–354CrossRefGoogle Scholar
  20. 20.
    Fabbriciani C, Milano G, Mulas PD et al (2005) Anterior cruciate ligament reconstruction with doubled semitendinosus and gracilis tendon graft in rugby players. Knee Surg Sports Traumatol Arthrosc 13(1):2–7PubMedCrossRefGoogle Scholar
  21. 21.
    Givoni NJ, Pham T, Allen TJ, et al. (2007) The effect of quadriceps muscle fatigue on position matching at the knee. J Physiol 584(pt1):111–119Google Scholar
  22. 22.
    Gobbi A, Diara A, Mahajan S et al (2002) Patellar tendon anterior cruciate ligament reconstruction with conical press-fit femoral fixation: 5-year results in athletes population. Knee Surg Sports Traumatol Arthrosc 10(2):73–79PubMedCrossRefGoogle Scholar
  23. 23.
    Goldblatt JP, Fitzsimmons SE, Balk E et al (2005) Reconstruction of the anterior cruciate ligament: meta-analysis of patellar tendon versus hamstring tendon autograft. Arthroscopy 21(7):791–803PubMedCrossRefGoogle Scholar
  24. 24.
    Goradia VK, Grana WA, Pearson SE (2006) Factors associated with decreased muscle strength after anterior cruciate ligament reconstruction with hamstring tendon grafts. Arthroscopy 22(1):80.e1–80.e15Google Scholar
  25. 25.
    Gregoire L, Veeger HE, Huijing PA, van Ingen Schenau GJ (1984) Role of mono-and biarticular muscles in explosive movements. Int J Sports Med 5(6):301–305PubMedCrossRefGoogle Scholar
  26. 26.
    Van Grinsven S, Van Cingel REH, Holla CJM et al (2010) Evidence-based rehabilitation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18:1128–1144PubMedCrossRefGoogle Scholar
  27. 27.
    Gross MT, Huffman GM, Phillips CN, Wray JA (1991) Intramachine and intermachine reliability of the Biodex and Cybex II for knee flexion and extension peak torque and angular work. J Orthop Sports Phys Ther 13(6):329–335Google Scholar
  28. 28.
    Gustavsson A, Neeter C, Thomeé P et al (2008) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14:778–788CrossRefGoogle Scholar
  29. 29.
    Harilainen A, Linko E, Sandelin J (2006) Randomized prospective study of ACL reconstruction with interference screw fixation in patellar tendon autografts versus femoral metal plate suspension and tibial post fixation in hamstring tendon autografts: 5-year clinical and radiological follow-up results. Knee Surg Sports Traumatol Arthrosc 14(6):517–528PubMedCrossRefGoogle Scholar
  30. 30.
    Heijne A, Werner S (2010) A 2-year follow-up of rehabilitation after ACL reconstruction using patellar tendon or hamstring tendon grafts: a prospective randomized outcome study. Knee Surg Sports Traumatol Arthrosc 18(6):805–813PubMedCrossRefGoogle Scholar
  31. 31.
    Hewett TE, Lindenfeld TN, Riccobene JV et al (1999) The effect of neuromuscular training on the incidence of knee injury in female athletes: a prospective study. Am J Sports Med 27:699–706PubMedGoogle Scholar
  32. 32.
    Hiemstra LA, Lo IK, Fowler PJ (2001) Effect of fatigue on knee proprioception: implications for dynamic stabilization. J Orthop Sports Phys Ther 31(10):598–605PubMedGoogle Scholar
  33. 33.
    Hiemstra LA, Webber S, MacDonald PB et al (2007) Contralateral limb strength deficits after anterior cruciate ligament reconstruction using a hamstring tendon graft. Clin Biomech 22(5):543–550CrossRefGoogle Scholar
  34. 34.
    Hübscher M, Zech A, Pfeifer K et al (2010) Neuromuscular training for sports injury prevention: a systematic review. Med Sci Sports Exerc 42(3):413–421PubMedCrossRefGoogle Scholar
  35. 35.
    Impellizzeri FM, Bizzini M, Rampinini E, Cedera F, Maffiuletti NA (2008) Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin Physiol Funct Imaging 28(2):113–119PubMedCrossRefGoogle Scholar
  36. 36.
    Keays SL, Bullock-Saxton JE, Keays AC et al (2007) A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction. Patellar tendon versus semitendinosus and gracilis tendon graft. Am J Sports Med 35(5):729–739PubMedCrossRefGoogle Scholar
  37. 37.
    Keskula DR, Dowling JS, Davis VL, Finley PW, Dell’Omo DL (1995) Interrater reliability of isokinetic measures of knee flexion and extension. J Athl Train 30(2):167–170PubMedGoogle Scholar
  38. 38.
    Landry SC, McKean KA, Hubley-Kozey CL et al (2007) Neuromuscular and lower limb biomechanical differences exist between male and female elite adolescent soccer players during an unanticipated side-cut maneuver. Am J Sports Med 35(11):1888–1900PubMedCrossRefGoogle Scholar
  39. 39.
    Landry SC, McKean KA, Hubley-Kozey CL et al (2009) Gender differences exist in neuromuscular control patterns during the pre-contact and early stance phase of an unanticipated side-cut and cross-cut maneuver in 15–18 years old adolescent soccer players. J Electromyogr Kinesiol 19(5):e370–e379PubMedCrossRefGoogle Scholar
  40. 40.
    LaStayo PC, Woolf JM, Lewek MD, Snyder-Mackler L, Reich T, Lindstedt SL (2003) Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther 33:557–571PubMedCrossRefGoogle Scholar
  41. 41.
    Lautamies R, Harilainen A, Kettunen J et al (2008) Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 16(11):1009–1016PubMedCrossRefGoogle Scholar
  42. 42.
    Laxdal G, Sernert N, Ejerhed L et al (2007) A prospective comparison of bone-patellar tendon-bone and hamstring tendon grafts for anterior cruciate ligament reconstruction in male patients. Knee Surg Sports Traumatol Arthrosc 15(2):115–125PubMedCrossRefGoogle Scholar
  43. 43.
    Lidén M, Ejerhed L, Sernert N et al (2007) Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction. A prospective, randomized study with a 7-year follow-up. Am J Sports Med 35(5):740–748PubMedCrossRefGoogle Scholar
  44. 44.
    Maffiuletti NA, Bizzini M, Desbrosses K, Babault N, Munzinger U (2007) Reliability of knee extension and flexion measurements using the Con-Trex isokinetic dynamometer. Clin Physiol Funct Imaging 27(6):346–353PubMedCrossRefGoogle Scholar
  45. 45.
    Maletis GB, Cameron SL, Tengan JJ et al (2007) A prospective randomized study of anterior cruciate ligament reconstruction. A comparison of patellar tendon an quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med 35(3):384–394PubMedCrossRefGoogle Scholar
  46. 46.
    Mandelbaum BR, Silvers HJ, Watanabe D et al (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: two-year follow up. Am J Sports Med 33:1003–1010PubMedCrossRefGoogle Scholar
  47. 47.
    Melnyk M, Gollhofer A (2007) Submaximal fatigue of the hamstrings impairs specific reflex components and knee stability. Knee Surg Sports Traumatol Arthrosc 15(5):525–532PubMedCrossRefGoogle Scholar
  48. 48.
    Moisala AS, Järvelä T, Kannus P et al (2007) Muscle strength evaluations after ACL reconstruction. Int J Sports Med 28(10):868–872PubMedCrossRefGoogle Scholar
  49. 49.
    Neeter C, Gustavsson A, Thomée P, Augustsson J, Thomée R, Karlsson J (2006) Development of a strength test battery for evaluating leg muscle power after anterior cruciate ligament injury and reconstruction. Knee Surg Sports Traumatol Arthrosc 14(6):571–580PubMedCrossRefGoogle Scholar
  50. 50.
    Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19(5):513–518PubMedCrossRefGoogle Scholar
  51. 51.
    Novak PJ, Bach BR, Hager CA (1996) Clinical and functional outcome of anterior cruciate ligament reconstruction in the recreational athlete over the age of 35. Am J Knee Surg 9(3):111–116PubMedGoogle Scholar
  52. 52.
    Nyberg B, Granhed H, Peterson K et al (2006) Muscle strength and jumping distance during 10 years post ACL reconstruction. Isokinet Exerc Sci 14:363–370Google Scholar
  53. 53.
    Paterno MV, Schmitt LC, Ford KR et al (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978PubMedCrossRefGoogle Scholar
  54. 54.
    Petersen W, Braun C, Bock W et al (2005) A controlled prospective case control study of a prevention training program in female team handball players: the German experience. Arch Orthop Trauma Surg 125:514–521CrossRefGoogle Scholar
  55. 55.
    Pinczewski LA, Lyman J, Salmon LJ et al (2007) A 10-year comparison of anterior cruciate ligament reconstruction with hamstring tendon and patellar tendon autograft. Am J Sports Med 35(4):564–574PubMedCrossRefGoogle Scholar
  56. 56.
    Von Porat A, Holström E, Roos E (2008) Reliability and validity of videotaped functional performance tests in ACL-injured subjects. Physiother Res Int 13(2):119–130CrossRefGoogle Scholar
  57. 57.
    Reid A, Birmingham TB, Stratford PW et al (2007) Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther 87(3):337–349PubMedCrossRefGoogle Scholar
  58. 58.
    Reinhardt KR, Hetsroni I, Marx R (2010) Graft selection for anterior cruciate ligament reconstruction: a level I systematic review comparing failure rates and functional outcomes. Orthop Clin North Am 41(2):249–262PubMedCrossRefGoogle Scholar
  59. 59.
    Renstrom P, Ljungqvist A, Arendt E et al (2008) Non-contact ACL injuries in female athletes: an international olympic committee current concepts statement. Br J Sports Med 42:394–412PubMedCrossRefGoogle Scholar
  60. 60.
    Roberts D, Friden T, Stomberg A et al (2000) Bilateral proprioceptive defects in patients with an unilateral anterior cruciate ligament reconstruction: a comparison between patients and healthy individuals. J Orthop Res 18:565–571PubMedCrossRefGoogle Scholar
  61. 61.
    Sajovic M, Vengust V, Komadina R et al (2006) A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction. Five-year follow-up. Am J Sports Med 34(12):1933–1940PubMedCrossRefGoogle Scholar
  62. 62.
    Salmon L, Russell V, Musgrove T et al (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21(8):948–957PubMedCrossRefGoogle Scholar
  63. 63.
    Salmon LJ, Russell VJ, Refshauge K et al (2006) Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med 34(5):721–732PubMedCrossRefGoogle Scholar
  64. 64.
    Sernert N, Kartus J, Köhler K et al (1999) Analysis of subjective, objective and functional tests after anterior cruciate ligament reconstruction. A follow-up of 527 patients. Knee Surg Sports Traumatol Arthrosc 7(3):160–165PubMedCrossRefGoogle Scholar
  65. 65.
    Simonsen EB, Thomsen L, Klausen K (1985) Activity of mono- and biarticular leg muscles during sprint running. Eur J Appl Physiol Occup Physiol 54(5):524–532PubMedCrossRefGoogle Scholar
  66. 66.
    Sole G, Hamrén J, Milosvljevic S, Bicholson H, Sullivan SJ (2007) Test-retest reliability of isokinetic knee extension and flexion. Achr Phys Med Rehabil 88(5):626–631CrossRefGoogle Scholar
  67. 67.
    Svensson M, Sernert N, Ejerhed L et al (2006) A prospective comparison of bone-patellar-tendon-bone and hamstring grafts for anterior cruciate ligament reconstruction in female patients. Knee Surg Sports Traumatol Arthrosc 14(3):278–286PubMedCrossRefGoogle Scholar
  68. 68.
    Swärd P, Kostogiannis I, Roos H (2010) Risk factors for a contralateral anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 18:277–291PubMedCrossRefGoogle Scholar
  69. 69.
    Tadokoro K, Matsui N, Yagi M et al (2004) Evaluation of hamstring strength and tendon regrowth after harvesting for anterior cruciate ligament reconstruction. Am J Sports Med 32(7):1644–1650PubMedCrossRefGoogle Scholar
  70. 70.
    Taylor DC, DeBerardino TM, Nelson BJ et al (2009) Patellar tendon versus hamstring tendon autografts for anterior cruciate ligament reconstruction: a randomized controlled trial using similar femoral and tibial fixation methods. Am J Sports Med 37(10):1946–1957PubMedCrossRefGoogle Scholar
  71. 71.
    Thomas AC, McLean SG, Palmieri-Smith RM (2010) Quadriceps and hamstrings fatigue alters hip and knee mechanics. J Appl Biomech 26(2):159–170PubMedGoogle Scholar
  72. 72.
    Thomeé R, Werner S (2011) Return to sport. Knee Surg Sports Traumatol Arthrosc 19:1795–1797PubMedCrossRefGoogle Scholar
  73. 73.
    Thomeé R, Kaplan Y, Kvist J et al (2011) Muscle strength hand hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1798–1805PubMedCrossRefGoogle Scholar
  74. 74.
    Toritsuka Y, Amano H, Kuwano M et al (2009) Outcome of double bundle ACL reconstruction using hamstring tendons. Knee Surg Sports Traumatol Arthrosc 17(5):456–463PubMedCrossRefGoogle Scholar
  75. 75.
    Tow BPB, Chang PCC, Mitra AK et al (2005) Comparing 2-year outcomes of anterior cruciate ligament reconstruction using either patella-tendon or semitendinosus-tendon autografts: a non-randomised prospective study. J Orthop Surg 13(2):139–146Google Scholar
  76. 76.
    Tsai LC, Sigward SM, Pollard CD et al (2009) Effects of fatigue and recovery on knee mechanics during side-step cutting. Med Sci Sports Exerc 41(10):1952–1957PubMedCrossRefGoogle Scholar
  77. 77.
    Tsai L (2010) The Swedisch National ACL register. Annual report 2010. Available via http://www.artroclinic.se/info/rapport2010en.pdf
  78. 78.
    Weninger P, Zifko B, Liska M et al (2008) Anterior cruciate ligament reconstruction using autografts and double-biodegradable femoral cross-pin fixation: functional, radiographic and MRI outcome after 2-year minimum follow up. Knee Surg Sports Traumatol Arthrosc 16(11):988–995PubMedCrossRefGoogle Scholar
  79. 79.
    Wojtys EM, Wylie BB, Huston LJ (1996) The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am J Sports Med 24(5):615–621PubMedCrossRefGoogle Scholar
  80. 80.
    Zaccherotti G, Aglietti P, Bandinelli I (1997) Long-term isokinetic evaluatoin of quadriceps strength following ACL reconstruction. A case-control study. J Sports Traumatol Rel Res 19(3):141–158Google Scholar
  81. 81.
    Zebis MK, Bencke J, Andersen LL et al (2011) Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players. Scand J Med Sci Sports 21(6):833–840PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nicky Engelen-van Melick
    • 1
    Email author
  • Robert E. H. van Cingel
    • 1
    • 3
  • Marsha P. W. Tijssen
    • 1
  • Maria W. G. Nijhuis-van der Sanden
    • 2
  1. 1.Sport Medisch Centrum PapendalArnhemThe Netherlands
  2. 2.Scientific Institute for Quality in Health CareRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  3. 3.Institute Health StudiesHAN University of Applied SciencesNijmegenThe Netherlands

Personalised recommendations