Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 21, Issue 2, pp 476–484 | Cite as

Close-looped graft suturing improves mechanical properties of interference screw fixation in ACL reconstruction

  • María Prado
  • Belén Martín-Castilla
  • Alejandro Espejo-Reina
  • José Miguel Serrano-Fernández
  • Ana Pérez-BlancaEmail author
  • Francisco Ezquerro
Experimental study



In anterior cruciate ligament reconstruction with looped soft-tissue grafts, an interference screw is frequently used for tibial fixation. This study compared three alternatives thought to improve the initial mechanical properties of direct bioabsorbable interference screw fixation: suturing the graft to close the loop, adding a supplementary staple, or increasing the oversize of the screw diameter relative to the bone tunnel from 1 to 2 mm.


Twenty-eight porcine tibiae and porcine flexor digitorum profundus tendons were randomized into four testing groups: a base fixation using 10-mm-diameter screw with open-looped graft, base fixation supplemented by an extracortical staple, base fixation but closing the looped graft by suturing its ends, and base fixation but using an 11-mm screw. Graft and bone tunnel diameters were 9 mm in all specimens. Constructs were subjected to cyclic tensile load and finally pulled to failure to determine their structural properties.


The main mode of failure in all groups was pull-out of tendon strands after slippage past the screw. The sutured graft group displayed significantly lower residual displacement (mean value reduction: 47–67 %) and higher yield load (mean value increase: 38–54 %) than any alternative tested. No other statistical differences were found.


Suturing a soft-tissue graft to form a closed loop enhanced the initial mechanical properties of tibial fixation with a bioabsorbable interference screw in anterior cruciate ligament reconstructions using a porcine model, and thus, this may be an efficient means to help in reducing post-operative laxity and early clinical failure. No mechanical improvement was observed for an open-looped tendon graft by adding an extracortical staple to supplement the screw fixation or by increasing the oversize of the screw to tunnel diameter from 1 to 2 mm.


Anterior cruciate ligament Soft-tissue graft Interference screw Tibial fixation Supplementary fixation Mechanical testing 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Adam F, Pape D, Schiel K, Steimer O, Kohn D, Rupp S (2004) Biomechanical properties of patellar and hamstring graft tibial fixate on techniques in anterior cruciate ligament reconstruction: experimental study with roentgen stereometric analysis. Am J Sports Med 32:71–78PubMedCrossRefGoogle Scholar
  2. 2.
    Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DNM (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710PubMedGoogle Scholar
  3. 3.
    Bravman J, Ishak C, Gelber J, Namkoong S, Jazrawi L, Kummer FJ (2006) The interaction between the whipstitch sutures of multi-strand ACL grafts and interference screw fixation. Bull Hosp Jt Dis 63:156–157PubMedGoogle Scholar
  4. 4.
    Caborn DNM, Nyland J, Selby J, Tetik O (2003) Biomechanical testing of hamstring graft tibial tunnel fixation with bioabsorbable interference screws. Arthroscopy 19:991–996PubMedCrossRefGoogle Scholar
  5. 5.
    Chang HC, Nyland J, Nawab A, Burden R, Caborn DN (2005) Biomechanical comparison of the bioabsorbable RetroScrew system, BioScrew XtraLok with stress equalization tensioner, and 35-mm Delta Screws for tibialis anterior graft-tibial tunnel fixation in porcine tibiae. Am J Sports Med 33:1057–1064PubMedCrossRefGoogle Scholar
  6. 6.
    Charlick DA, Caborn DN (2000) Alternative soft tissue graft preparation technique for cruciate ligament reconstruction. Arthroscopy 6:E20Google Scholar
  7. 7.
    Espejo-Baena A, Ezquerro F, Pérez de la Blanca A, Serrano-Fernández J, Nadal F, Montañez-Heredia E (2006) Comparison of initial mechanical properties of 4 hamstring graft femoral fixation systems using nonpermanent hardware for anterior cruciate ligament reconstruction: an in vitro animal study. Arthroscopy 22:433–440PubMedCrossRefGoogle Scholar
  8. 8.
    Giurea M, Zorilla P, Amis AA, Aichroth P (1999) Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med 27:621–625PubMedGoogle Scholar
  9. 9.
    Halewood C, Hirschmann MT, Newman S, Hleihil J, Chaimski G, Amis AA (2011) The fixation strength of a novel ACL soft-tissue graft fixation device compared with conventional interference screws: a biomechanical study in vitro. Knee Surg Sports Traumatol Arthrosc 19:559–567PubMedCrossRefGoogle Scholar
  10. 10.
    Hamner DL, Brown CH Jr, Steiner ME, Hecker AT, Hayes WC (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg Am 81:549–557PubMedGoogle Scholar
  11. 11.
    Harvey A, Thomas NP, Amis AA (2005) Fixation of the graft in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 87-B:593–603CrossRefGoogle Scholar
  12. 12.
    Herrera A, Martínez F, Iglesias D, Cegoñino J, Ibarz E, Gracia L (2010) Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study. BMC Musculoskelet Disord 11:139–146PubMedCrossRefGoogle Scholar
  13. 13.
    Hill PF, Russell VJ, Salmon LJ, Pinczewski LA (2005) The influence of supplementary tibial fixation on laxity measurements after anterior cruciate ligament reconstruction with hamstring tendons in female patients. Am J Sports Med 33:94–101PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson D (2005) Anterior cruciate reconstruction using hamstring graft fixed with bioscrews and augmented with the endopearl. Tech Orthop 20:264–271CrossRefGoogle Scholar
  15. 15.
    Kamelger FS, Onder U, Schmoelz W, Tecklenburg K, Arora R, Fink C (2009) Suspensory fixation of grafts in anterior cruciate ligament reconstruction: a biomechanical comparison of 3 implants. Arthroscopy 25:767–776PubMedCrossRefGoogle Scholar
  16. 16.
    Kitamura N, Yasuda K, Yamanaka M, Tohyama H (2003) Biomechanical comparisons of three posterior cruciate ligament reconstruction procedures with load-controlled and displacement-controlled cyclic tests. Am J Sports Med 31:907–914PubMedGoogle Scholar
  17. 17.
    Kousa P, Järvinen TLN, Vihavainen M, Kannus P, Järvinen M (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction: Part II: tibial site. Am J Sports Med 31:182–188PubMedGoogle Scholar
  18. 18.
    Krackow KA, Thomas SC, Jones LC (1988) Ligament-tendon fixation: analysis of a new stitch and comparison with standard techniques. Orthopedics 11:909–917PubMedGoogle Scholar
  19. 19.
    Kudo T, Tohyama H, Minami A, Yasuda K (2005) The effect of cyclic loading on the biomechanical characteristics of the femur-graft-tibia complex after anterior cruciate ligament reconstruction using Bone Mulch screw/WasherLoc fixation. Clin Biomech 20:414–420CrossRefGoogle Scholar
  20. 20.
    Lahav A, Burks RT (2005) Evaluation of the failed ACL reconstruction. Sports Med Arthrosc Rev 13:8–16CrossRefGoogle Scholar
  21. 21.
    Lee JJ, Otarodifard K, Jun BJ, McGarry MH, Hatch GF III, Lee TQ (2011) Is supplementary fixation necessary in anterior cruciate ligament reconstructions? Am J Sports Med 39:360PubMedCrossRefGoogle Scholar
  22. 22.
    Lim CT, Tan K, Chuan AK (2009) Clinical stability and outcome of supplementing tibial fixation with a staple for ACL reconstruction using hamstring tendons. Curr Orthop Pract 20:660–664CrossRefGoogle Scholar
  23. 23.
    Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27:35–43PubMedGoogle Scholar
  24. 24.
    Meuffels DE, Docter PT, van Dongen RA, Kleinrensink G, Verhaar JAN, Reijman M (2010) Stiffer fixation of the tibial double-tunnel anterior cruciate ligament complex versus the single tunnel: a biomechanical study. Arthroscopy 26:S35–S40PubMedCrossRefGoogle Scholar
  25. 25.
    Micucci CJ, Frank DA, Kompel J, Muffly M, Demeo PJ, Altman GT (2010) The effect of interference screw diameter on fixation of soft-tissue grafts in anterior cruciate ligament reconstruction. Arthroscopy 26:1105–1110PubMedCrossRefGoogle Scholar
  26. 26.
    Miyata K, Yasuda K, Kondo E, Nakano H, Kimura S, Hara N (2000) Biomechanical comparisons of anterior cruciate ligament: reconstruction procedures with flexor tendon graft. J Orthop Sci 5:585–592PubMedCrossRefGoogle Scholar
  27. 27.
    Monaco E, Labianca L, Speranza A, Agro AM, Camillieri G, D’arrigo C, Ferretti A (2010) Biomechanical evaluation of different anterior cruciate ligament fixation techniques for hamstring graft. J Orthop Sci 15:125–131PubMedCrossRefGoogle Scholar
  28. 28.
    Morris MW, Williams JL, Thake AJ, Lang Y, Brown JN (2004) Optimal screw diameter for interference fixation in a bone tunnel: a porcine model. Knee Surg Sports Traumatol Arthrosc 12:486–489PubMedCrossRefGoogle Scholar
  29. 29.
    Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP (2001) Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med 29:67–71PubMedGoogle Scholar
  30. 30.
    Namkoong S, Heywood CS, Bravman JT, Ieyasa K, Kummer FJ, Meislin RJ (2006) The effect of interference screw diameter on soft tissue graft fixation. Bull Hosp Jt Dis 63:153–155PubMedGoogle Scholar
  31. 31.
    Nurmi JT, Sievänen H, Kannus P, Järvinen M, Järvinen TLN (2004) Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 32:765–771PubMedCrossRefGoogle Scholar
  32. 32.
    Roy S, Fernhout M, Stanley R, McGee M, Carbone T, Field JR, Dobson P (2010) Tibial interference screw fixation in anterior cruciate ligament reconstruction with and without autograft bone augmentation. Arthroscopy 26:949–956PubMedCrossRefGoogle Scholar
  33. 33.
    Rupp S, Seil R, Schneider A, Kohn DM (1999) Ligament graft initial fixation strength using biodegradable interference screws. J Biomed Mater Res 48:70–74PubMedCrossRefGoogle Scholar
  34. 34.
    Scheffler S, Sudkamp N, Gockenjan A, Hoffmann R, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–315PubMedCrossRefGoogle Scholar
  35. 35.
    Trump M, Palathinkal DM, Beaupre L, Otto D, Leung P, Amirfazli A (2011) In vitro biomechanical testing of anterior cruciate ligament reconstruction: Traditional versus physiologically relevant load analysis. Knee 18:193–201PubMedCrossRefGoogle Scholar
  36. 36.
    Walsh MP, Wijdicks CA, Armitage BM, Westerhaus BD, Parker JB, Laprade RF (2009) The 1:1 versus the 2:2 tunnel-drilling technique: optimization of fixation strength and stiffness in an all-inside double-bundle anterior cruciate ligament reconstruction—a biomechanical study. Am J Sports Med 37:1539–1547PubMedCrossRefGoogle Scholar
  37. 37.
    Weiler A, Hoffmann RFG, Siepe CJ, Kolbeck SF, Südkamp NP (2000) The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 28:356–359PubMedGoogle Scholar
  38. 38.
    Wijdicks CA, Brand EJ, Nuckley DJ, Johansen S, LaPrade RF, Engebretsen L (2010) Biomechanical evaluation of a medial knee reconstruction with comparison of bioabsorbable interference screw constructs and optimization with a cortical button. Knee Surg Sports Traumatol Arthrosc 18:1532–1541PubMedCrossRefGoogle Scholar
  39. 39.
    Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ, Petersen W (2006) Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-d, l-lactide, and poly-d, l-lactide-tricalcium phosphate screws. Arthroscopy 22:1204–1210PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • María Prado
    • 1
  • Belén Martín-Castilla
    • 2
  • Alejandro Espejo-Reina
    • 3
  • José Miguel Serrano-Fernández
    • 2
  • Ana Pérez-Blanca
    • 1
    Email author
  • Francisco Ezquerro
    • 1
  1. 1.Laboratorio de Biomecánica, Departamento de Ingeniería MecánicaEscuela de Ingenierías, Universidad de MalagaMalagaSpain
  2. 2.Servicio de Cirugía Ortopédica y TraumatologíaHospital Clínico Universitario Virgen de la VictoriaMalagaSpain
  3. 3.Servicio de de Cirugía Ortopédica y TraumatologíaCentro Hospitalario de JaénJaénSpain

Personalised recommendations