Cryopreservation with glycerol improves the in vitro biomechanical characteristics of human patellar tendon allografts

  • Lovro Suhodolčan
  • Miha Brojan
  • Franc Kosel
  • Matej Drobnič
  • Armin Alibegović
  • Janez Brecelj
Experimental Study



To evaluate the in vitro biomechanical characteristics of patellar tendon ligaments (BTB) when stored as fresh frozen or as glycerol cryopreserved allografts.


Seventy patellar tendons were harvested from 35 cadaveric human donors and randomly assigned into seven groups. Grafts in group FRESH were mechanically tested within 2 h of harvesting. FROZ-3, FROZ-6, and FROZ-9 were deep-frozen to −80°C for 3, 6, and 9 months, respectively. Grafts in groups CRYO-3, CRYO-6, and CRYO-9 were initially incubated with 10 % glycerol in a phosphate-buffered saline for 1 h and then stored in glycerol solution (10 % glycerol in PBS) at −80°C for 3, 6, and 9 months, respectively. Grafts were mechanically tested with two cycling modes (50–250°N and 150–500°N) and then loaded to failure.


Cryopreserved grafts demonstrated more consistent results and expressed lower elongation rates after both cycling loading protocols compared to their frozen counterparts at all storage times. During load-to-failure analysis, ultimate stiffness levels were predominantly higher (23.9–61.5 %) in cryopreserved grafts compared with frozen grafts, and ultimate stress levels were 26 % (13.3–47.7 %) higher, regardless of the storage time. Moreover, cryopreserved grafts revealed similar ultimate elongation and uniformly higher ultimate stiffness and ultimate stress levels compared to fresh grafts.


The results of this in vitro study demonstrated superior mechanical properties of cryopreserved grafts compared to frozen grafts within a preservation period of 9 months. Cryopreservation with glycerol solution might be used to further improve the quality of preserved soft-tissue allografts.


Anterior cruciate ligament Allograft Cryopreservation Glycerolisation Human bone-patellar tendon-bone graft Mechanical testing 


  1. 1.
    Almqvist KF, Jan H, Vercruysse C, Verbeeck R, Verdonk R (2007) The tibialis tendon as a valuable anterior cruciate ligament allograft substitute: biomechanical properties. Knee Surg Sports Traumatol Arthrosc 15:1326–1330PubMedCrossRefGoogle Scholar
  2. 2.
    American Association of Tissue Banks: Standards for Tissue Banking—12th edn. McLean: American Association of Tissue Banks, 2008. Available at:
  3. 3.
    Attarian H, Feng Z, Buckner CD, MacLeod B, Rowley SD (1996) Long-term cryopreservation of bone marrow for autologous transplantation. Bone Marrow Transplant 17:425–430PubMedGoogle Scholar
  4. 4.
    Barber-Westin SD, Noyes FR, Heckmann TP, Shaffer BL (1999) The effect of exercise and rehabilitation on anterior-posterior knee displacements after anterior cruciate ligament autograft reconstruction. Am J Sports Med 27:84–93PubMedGoogle Scholar
  5. 5.
    Barbour SA, King W (2003) The safe and effective use of allograft tissue-an update. Am J Sports Med 31:791–797PubMedGoogle Scholar
  6. 6.
    Bonamo JJ, Krinick RM, Sporn AA (1984) Rupture of the patellar ligament after use of its central third for anterior cruciate reconstruction. A report of two cases. J Bone Joint Surg Am 66:1294–1297PubMedGoogle Scholar
  7. 7.
    Buchmann S, Musahl V, Imhoff AB, Brucker PU (2008) Allografts for cruciate ligament reconstruction. Orthopade 37:772–778PubMedCrossRefGoogle Scholar
  8. 8.
    Castagnoli C, Alotto D, Cambieri I et al (2003) Evaluation of donor skin viability: fresh and cryopreserved skin using tetrazolioum salt assay. Burns 29:759–767PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen SB, Sekiya JK (2007) Allograft safety in anterior cruciate ligament reconstruction. Clin Sports Med 26:597–605PubMedCrossRefGoogle Scholar
  10. 10.
    Fowler A, Toner M (2005) Cryo-injury and biopreservation. Ann NY Acad Sci 1066:119–135PubMedCrossRefGoogle Scholar
  11. 11.
    Greaves LL, Hecker AT, Brown CH Jr (2008) The effect of donor age and low-dose gamma irradiation on the initial biomechanical properties of human tibialis tendon allografts. Am J Sports Med 36:1358–1366PubMedCrossRefGoogle Scholar
  12. 12.
    Hamada M, Shino K, Mitsuoka T, Abe N, Horibe S (1998) Cross-sectional area measurement of the semitendinosus tendon for anterior cruciate ligament reconstruction. Arthroscopy 14:696–701PubMedCrossRefGoogle Scholar
  13. 13.
    Hoburg AT, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S (2010) Effect of electron beam irradiation on biomechanical properties of patellar tendon allografts in anterior cruciate ligament reconstruction. Am J Sports Med 38:1134–1140PubMedCrossRefGoogle Scholar
  14. 14.
    Hoburg A, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C, Pruss A, Scheffler S (2011) Fractionation of high-dose electron beam irradiation of BPTB grafts provides significantly improved viscoelastic and structural properties compared to standard gamma irradiation. Knee Surg Sports Traumatol Arthrosc 19:1955–1961PubMedCrossRefGoogle Scholar
  15. 15.
    Honl M, Carrero V, Hille E, Schneider E, Morlock MM (2002) Bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction: an in vitro comparison of mechanical behavior under failure tensile loading and cyclic submaximal tensile loading. Am J Sports Med 30:549–557PubMedGoogle Scholar
  16. 16.
    Indelli PF, Dillingham MF, Fanton GS, Schurman DJ (2004) Anterior cruciate ligament reconstruction using cryopreserved allografts. Clin Orthop Relat Res 420:268–275PubMedCrossRefGoogle Scholar
  17. 17.
    Jackson DW, Corsetti J, Simon TM (1996) Biologic incorporation of allograft anterior cruciate ligament replacements. Clin Orthop Relat Res 324:126–133PubMedCrossRefGoogle Scholar
  18. 18.
    Kamiński A, Gut G, Marowska J, Lada-Kozłowska M, Biwejnis W, Zasacka M (2008) Mechanical properties of radiation-sterilised human bone-tendon-bone grafts preserved by different methods. Cell Tissue Bank 45:122–129Google Scholar
  19. 19.
    Kang RW, Strauss EJ, Barker JU, Bach BR Jr (2011) Effect of donor age on bone mineral density in irradiated bone-patellar tendon-bone allografts of the anterior cruciate ligament. Am J Sports Med 39:380–383PubMedCrossRefGoogle Scholar
  20. 20.
    Lind M, Lund B, Faunø P, Said S, Miller LL, Christiansen SE (2012) Medium to long-term follow-up after ACL revision. Knee Surg Sports Traumatol Arthrosc 20:166–172PubMedCrossRefGoogle Scholar
  21. 21.
    Markolf KL, Zemanovic JR, McAllister DR (2002) Cyclic loading of posterior cruciate ligament replacements fixed with tibial tunnel and tibial inlay methods. J Bone Joint Surg Am 84-A:518–524PubMedGoogle Scholar
  22. 22.
    Mascarenhas R, Tranovich M, Karpie JC, Irrgang JJ, Fu FH, Harner CD (2010) Patellar tendon anterior cruciate ligament reconstruction in the high-demand patient: evaluation of autograft versus allograft reconstruction. Arthroscopy 26(9 Suppl):S58–S66PubMedGoogle Scholar
  23. 23.
    Mazur P (2004) Principles of cryobiology. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, Boca Raton, pp 3–65CrossRefGoogle Scholar
  24. 24.
    Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352PubMedGoogle Scholar
  25. 25.
    Olson EJ, Harner CD, Fu FH, Silbey MB (1992) Clinical use of fresh, frozen soft tissue allografts. Orthopedics 15:1225–1232PubMedGoogle Scholar
  26. 26.
    Park HJ, Urabe K, Naruse K, Onuma K, Nemoto N, Itoman M (2009) The effect of cryopreservation or heating on the mechanical properties and histomorphology of rat bone-patellar tendon-bone. Cell Tissue Bank 10:11–18PubMedCrossRefGoogle Scholar
  27. 27.
    Paulos LE, Karistinos A, Walker J (2006) “Criteria”-based rehabilitation of surgically reconstructed and nonsurgically treated anterior cruciate ligament injuries. In: Scott WN (ed) Insall & scott surgery of the knee, 4th edn. Elsevier Churchill Livingstone, Philadelphia, pp 693–714Google Scholar
  28. 28.
    Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren RF (2000) Histological analysis of human meniscal allografts. A preliminary report. J Bone Joint Surg Am 82-A:1071–1082PubMedGoogle Scholar
  29. 29.
    Rodrigo JJ, Jackson DW, Simon TM (1993) The immune response to freeze dried bone tendon bone allografts in humans. Am J Knee Surg 6:347–353Google Scholar
  30. 30.
    Rosenberg TD, Franklin JL, Baldwin GN, Nelson KA (1992) Extensor mechanism function after patellar tendon graft harvest for anterior cruciate ligament reconstruction. Am J Sports Med 20:519–525PubMedCrossRefGoogle Scholar
  31. 31.
    Scheffler SU, Scherler J, Pruss A, von Versen R, Weiler A (2005) Biomechanical comparison of human bone-patellar tendon-bone grafts after sterilization with peracetic acid ethanol. Cell Tissue Bank 6:109–115PubMedCrossRefGoogle Scholar
  32. 32.
    Scheffler SU, Sudkamp NP, Gockenjan A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–315PubMedCrossRefGoogle Scholar
  33. 33.
    Seil R, Rupp S, Krauss PW, Benz A, Kohn DM (1998) Comparison of initial fixation strength between biodegradable and metallic interference screws and a press-fit fixation technique in a porcine model. Am J Sports Med 26:815–819PubMedGoogle Scholar
  34. 34.
    Shelburne KB, Torry MR, Pandy MG (2005) Muscle, ligament, and joint-contact forces at the knee during walking. Med Sci Sports Exerc 37:1948–1956PubMedCrossRefGoogle Scholar
  35. 35.
    Shelton WR, Treacy SH, Dukes AD, Bomboy AL (1998) Use of allografts in knee reconstruction: I. Basic science aspects and current status. J Am Acad Orthop Surg 6:165–168PubMedGoogle Scholar
  36. 36.
    Vuola J, Pipping D (2002) Maintaining a glycerolized skin bank-a practical approach. Burns 28(Suppl 1):S31–S33PubMedCrossRefGoogle Scholar
  37. 37.
    Wingenfeld C, Egli RJ, Hempfing A, Ganz R, Leunig M (2002) Cryopreservation of osteochondral allografts: dimethyl sulfoxide promotes angiogenesis and immune tolerance in mice. J Bone Joint Surg Am 84-A:1420–1429 (Erratum in: J Bone Joint Surg Am 84-A:1855)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Lovro Suhodolčan
    • 1
  • Miha Brojan
    • 2
  • Franc Kosel
    • 2
  • Matej Drobnič
    • 1
  • Armin Alibegović
    • 3
  • Janez Brecelj
    • 1
  1. 1.Department of Orthopaedic SurgeryUniversity Medical Centre LjubljanaLjubljanaSlovenia
  2. 2.Laboratory for Nonlinear Mechanics, Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Medical Faculty, Institute of Forensic MedicineUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations