Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 20, Issue 6, pp 1143–1151 | Cite as

Variability in leg muscle power and hop performance after anterior cruciate ligament reconstruction

  • Roland Thomeé
  • Camille Neeter
  • Alexander Gustavsson
  • Pia Thomeé
  • Jesper Augustsson
  • Bengt Eriksson
  • Jon Karlsson
Knee

Abstract

Purpose

The purpose of this prospective study was to describe the variability in leg muscle power and hop performance up to 2 years among patients following ACL reconstruction and specifically to illustrate the effects of various criteria for an acceptable level of muscle function.

Methods

Eighty-two patients (56 men and 26 women) with a mean age of 28 years, who underwent ACL reconstruction using either hamstring tendons (n = 46) or a patellar tendon (n = 36), were assessed pre-operatively and 3, 6, 12 and 24 months post-surgery with a battery of three lower extremity muscle power tests and a battery of three hop tests.

Results

Leg symmetry index (LSI) values at group level ranged between 73 and 100% at all follow-ups. When the tests were evaluated individually, patients reached an average LSI of ≥90% at 24 months. The success rate at 24 months for the muscle power test battery, that is, patients with an LSI of ≥90% in all three tests, was 48 and 44% for the hop test battery. The success rate at 24 months for both test batteries on all six muscle function tests was 22%. The criterion of an LSI of ≥80% resulted in 53% of the patients having an acceptable level on all six tests, while with a criterion of an LSI of ≥100%, none of the patients reached an acceptable level.

Conclusion

At group level and in single muscle function tests, the muscle function outcome 1 and 2 years after ACL reconstruction is satisfactory in the present study and on a par with the results presented in the literature. However, when using more demanding criteria for a successful muscle function outcome, using batteries of tests or increasing the acceptable LSI level from ≥90% to ≥95% or ≥100%, the results are considered to be poor. It is suggested that this should be taken into consideration when presenting results after ACL rehabilitation, deciding on the criteria for a safe return to sports, or designing rehabilitation programmes after ACL reconstruction.

Level of evidence

Prognostic prospective cohort study, Level I.

Keywords

Strength tests Muscle function Rehabilitation Criteria Return to sports 

References

  1. 1.
    Ageberg E, Roos HP, Silbernagel KG, Thomee R, Roos EM (2009) Knee extension and flexion muscle power after anterior cruciate ligament reconstruction with patellar tendon graft or hamstring tendons graft: a cross-sectional comparison 3 years post surgery. Knee Surg Sports Traumatol Arthrosc 17:162–169PubMedCrossRefGoogle Scholar
  2. 2.
    Ageberg E, Thomee R, Neeter C, Silbernagel KG, Roos EM (2008) Muscle strength and functional performance in patients with anterior cruciate ligament injury treated with training and surgical reconstruction or training only: a two to five-year followup. Arthr Rheum 59:1773–1779CrossRefGoogle Scholar
  3. 3.
    Augustsson J, Esko A, Thomee R, Svantesson U (1998) Weight training of the thigh muscles using closed vs. open kinetic chain exercises: a comparison of performance enhancement. J Orthop Sports Phys Ther 27:3–8PubMedGoogle Scholar
  4. 4.
    Augustsson J, Thomee R, Karlsson J (2004) Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:350–356PubMedCrossRefGoogle Scholar
  5. 5.
    Beutler A, de la Motte S, Marshall S, Padua D, Boden B (2009) Muscle strength and qualitative jump-landing differences in male and female military cadets: the jump-ACL study. J Sports Sci Med 8:663–671PubMedGoogle Scholar
  6. 6.
    Beynnon BD, Johnson RJ, Fleming BC (2002) The science of anterior cruciate ligament rehabilitation. Clin Orthop Relat Res 402:9–20PubMedCrossRefGoogle Scholar
  7. 7.
    Eitzen I, Holm I, Risberg MA (2009) Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. Br J Sports Med 43:371–376PubMedCrossRefGoogle Scholar
  8. 8.
    Fitzgerald GK, Axe MJ, Snyder-Mackler L (2000) A decision-making scheme for returning patients to high-level activity with nonoperative treatment after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc 8:76–82PubMedCrossRefGoogle Scholar
  9. 9.
    Fleming BC, Oksendahl H, Beynnon BD (2005) Open- or closed-kinetic chain exercises after anterior cruciate ligament reconstruction? Exerc Sport Sci Rev 33:134–140PubMedCrossRefGoogle Scholar
  10. 10.
    Foster TE, Wolfe BL, Ryan S, Silvestri L, Kaye EK (2010) Does the graft source really matter in the outcome of patients undergoing anterior cruciate ligament reconstruction? An evaluation of autograft versus allograft reconstruction results: a systematic review. Am J Sports Med 38:189–199PubMedCrossRefGoogle Scholar
  11. 11.
    Gustavsson A, Neeter C, Thomee P, Silbernagel KG, Augustsson J, Thomee R, Karlsson J (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14:778–788PubMedCrossRefGoogle Scholar
  12. 12.
    Heijne A, Ang BO, Werner S (2009) Predictive factors for 12-month outcome after anterior cruciate ligament reconstruction. Scand J Med Sci Sports 19:842–849PubMedCrossRefGoogle Scholar
  13. 13.
    Heijne A, Axelsson K, Werner S, Biguet G (2008) Rehabilitation and recovery after anterior cruciate ligament reconstruction: patients’ experiences. Scand J Med Sci Sports 18:325–335PubMedCrossRefGoogle Scholar
  14. 14.
    Heijne A, Werner S (2007) Early versus late start of open kinetic chain quadriceps exercises after ACL reconstruction with patellar tendon or hamstring grafts: a prospective randomized outcome study. Knee Surg Sports Traumatol Arthrosc 15:402–414PubMedCrossRefGoogle Scholar
  15. 15.
    Heijne A, Werner S (2010) A 2-year follow-up of rehabilitation after ACL reconstruction using patellar tendon or hamstring tendon grafts: a prospective randomised outcome study. Knee Surg Sports Traumatol Arthrosc 18:805–813PubMedCrossRefGoogle Scholar
  16. 16.
    Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2000) Knee strength deficits after hamstring tendon and patellar tendon anterior cruciate ligament reconstruction. Med Sci Sports Exerc 32:1472–1479PubMedCrossRefGoogle Scholar
  17. 17.
    Itoh H, Kurosaka M, Yoshiya S, Ichihashi N, Mizuno K (1998) Evaluation of functional deficits determined by four different hop tests in patients with anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc 6:241–245PubMedCrossRefGoogle Scholar
  18. 18.
    Juris PM, Phillips EM, Dalpe C, Edwards C, Gotlin RS, Kane DJ (1997) A dynamic test of lower extremity function following anterior cruciate ligament reconstruction and rehabilitation. J Orthop Sports Phys Ther 26:184–191PubMedGoogle Scholar
  19. 19.
    Keays SL, Bullock-Saxton JE, Keays AC, Newcombe PA, Bullock MI (2007) A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med 35:729–739PubMedCrossRefGoogle Scholar
  20. 20.
    Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC (2010) Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med 38:455–463PubMedCrossRefGoogle Scholar
  21. 21.
    Linko E, Harilainen A, Malmivaara A, Seitsalo S (2005) Surgical versus conservative interventions for anterior cruciate ligament ruptures in adults. Cochrane Database Syst Rev, CD001356Google Scholar
  22. 22.
    Liu-Ambrose T, Taunton JE, MacIntyre D, McConkey P, Khan KM (2003) The effects of proprioceptive or strength training on the neuromuscular function of the ACL reconstructed knee: a randomized clinical trial. Scand J Med Sci Sports 13:115–123PubMedCrossRefGoogle Scholar
  23. 23.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35:1756–1769PubMedCrossRefGoogle Scholar
  24. 24.
    Murphy DF, Connolly DA, Beynnon BD (2003) Risk factors for lower extremity injury: a review of the literature. Br J Sports Med 37:13–29PubMedCrossRefGoogle Scholar
  25. 25.
    Myklebust G, Holm I, Maehlum S, Engebretsen L, Bahr R (2003) Clinical, functional, and radiologic outcome in team handball players 6 to 11 years after anterior cruciate ligament injury: a follow-up study. Am J Sports Med 31:981–989PubMedGoogle Scholar
  26. 26.
    Neeter C, Gustavsson A, Thomee P, Augustsson J, Thomee R, Karlsson J (2006) Development of a strength test battery for evaluating leg muscle power after anterior cruciate ligament injury and reconstruction. Knee Surg Sports Traumatol Arthrosc 14:571–580PubMedCrossRefGoogle Scholar
  27. 27.
    Neuman P, Kostogiannis I, Friden T, Roos H, Dahlberg LE, Englund M (2009) Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury–a prospective cohort study. Osteoarthr Cartil 17:284–290PubMedCrossRefGoogle Scholar
  28. 28.
    Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19:513–518PubMedCrossRefGoogle Scholar
  29. 29.
    Nyland J, Klein S, Caborn DN (2010) Lower extremity compensatory neuromuscular and biomechanical adaptations 2 to 11 years after anterior cruciate ligament reconstruction. Arthroscopy 26:1212–1225PubMedCrossRefGoogle Scholar
  30. 30.
    Oiestad BE, Engebretsen L, Storheim K, Risberg MA (2009) Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med 37:1434–1443PubMedCrossRefGoogle Scholar
  31. 31.
    Oiestad BE, Holm I, Gunderson R, Myklebust G, Risberg MA (2010) Quadriceps muscle weakness after anterior cruciate ligament reconstruction: a risk factor for knee osteoarthritis? Arthr Care Res (Hoboken) 62:1706–1714CrossRefGoogle Scholar
  32. 32.
    Orishimo KF, Kremenic IJ, Mullaney MJ, McHugh MP, Nicholas SJ (2010) Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18:1587–1593PubMedCrossRefGoogle Scholar
  33. 33.
    Ostenberg A, Roos E, Ekdahl C, Roos H (1998) Isokinetic knee extensor strength and functional performance in healthy female soccer players. Scand J Med Sci Sports 8:257–264PubMedCrossRefGoogle Scholar
  34. 34.
    Palmieri-Smith RM, Thomas AC (2009) A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev 37:147–153PubMedCrossRefGoogle Scholar
  35. 35.
    Parkkari J, Kujala UM, Kannus P (2001) Is it possible to prevent sports injuries? Review of controlled clinical trials and recommendations for future work. Sports Med 31:985–995PubMedCrossRefGoogle Scholar
  36. 36.
    Pfeifer K, Banzer W (1999) Motor performance in different dynamic tests in knee rehabilitation. Scand J Med Sci Sports 9:19–27PubMedCrossRefGoogle Scholar
  37. 37.
    Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35:564–574PubMedCrossRefGoogle Scholar
  38. 38.
    Risberg MA, Holm I (2009) The long-term effect of 2 postoperative rehabilitation programs after anterior cruciate ligament reconstruction: a randomized controlled clinical trial with 2 years of follow-up. Am J Sports Med 37:1958–1966PubMedCrossRefGoogle Scholar
  39. 39.
    Risberg MA, Holm I, Ekeland A (1995) Reliability of functional knee tests in normal athletes. Scand J Med Sci Sports 5:24–28PubMedCrossRefGoogle Scholar
  40. 40.
    Risberg MA, Holm I, Tjomsland O, Ljunggren E, Ekeland A (1999) Prospective study of changes in impairments and disabilities after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 29:400–412PubMedGoogle Scholar
  41. 41.
    Roos EM (2005) Joint injury causes knee osteoarthritis in young adults. Curr Opin Rheumatol 17:195–200PubMedCrossRefGoogle Scholar
  42. 42.
    Rudolph KS, Axe MJ, Snyder-Mackler L (2000) Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumatol Arthrosc 8:262–269PubMedCrossRefGoogle Scholar
  43. 43.
    Sekiya I, Muneta T, Ogiuchi T, Yagishita K, Yamamoto H (1998) Significance of the single-legged hop test to the anterior cruciate ligament-reconstructed knee in relation to muscle strength and anterior laxity. Am J Sports Med 26:384–388PubMedGoogle Scholar
  44. 44.
    Shelbourne KD, Gray T (2009) Minimum 10-year results after anterior cruciate ligament reconstruction: how the loss of normal knee motion compounds other factors related to the development of osteoarthritis after surgery. Am J Sports Med 37:471–480PubMedCrossRefGoogle Scholar
  45. 45.
    Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res, 43–49Google Scholar
  46. 46.
    Thomee P, Wahrborg P, Borjesson M, Thomee R, Eriksson BI, Karlsson J (2006) A new instrument for measuring self-efficacy in patients with an anterior cruciate ligament injury. Scand J Med Sci Sports 16:181–187PubMedCrossRefGoogle Scholar
  47. 47.
    Thomee P, Wahrborg P, Borjesson M, Thomee R, Eriksson BI, Karlsson J (2008) Self-efficacy of knee function as a pre-operative predictor of outcome 1 year after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:118–127PubMedCrossRefGoogle Scholar
  48. 48.
    Thomee R, Kaplan Y, Kvist J, Myklebust G, Risberg MA, Theisen D, Tsepis E, Werner S, Wondrasch B, Witvrouw E (2011) Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1798–1805PubMedCrossRefGoogle Scholar
  49. 49.
    Thorstensson CA, Petersson IF, Jacobsson LT, Boegard TL, Roos EM (2004) Reduced functional performance in the lower extremity predicted radiographic knee osteoarthritis five years later. Ann Rheum Dis 63:402–407PubMedCrossRefGoogle Scholar
  50. 50.
    Wernbom M, Augustsson J, Thomee R (2007) The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med 37:225–264PubMedCrossRefGoogle Scholar
  51. 51.
    Wojtys EM, Huston LJ (2000) Longitudinal effects of anterior cruciate ligament injury and patellar tendon autograft reconstruction on neuromuscular performance. Am J Sports Med 28:336–344PubMedGoogle Scholar
  52. 52.
    von Porat A, Henriksson M, Holmstrom E, Roos EM (2007) Knee kinematics and kinetics in former soccer players with a 16-year-old ACL injury–the effects of twelve weeks of knee-specific training. BMC Musculoskelet Disord 8:35CrossRefGoogle Scholar
  53. 53.
    von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63:269–273CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Roland Thomeé
    • 1
    • 2
  • Camille Neeter
    • 1
  • Alexander Gustavsson
    • 1
  • Pia Thomeé
    • 1
    • 2
  • Jesper Augustsson
    • 3
  • Bengt Eriksson
    • 1
  • Jon Karlsson
    • 1
  1. 1.Lundberg Laboratory for Orthopaedic Research, Department of Orthopaedics, Sahlgrenska University HospitalGothenburg UniversityGöteborgSweden
  2. 2.Sportrehab—Physical Therapy & Sports Medicine ClinicGöteborgSweden
  3. 3.Department of Food and Nutrition, and Sport Science, Faculty of EducationGothenburg UniversityGöteborgSweden

Personalised recommendations