Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 20, Issue 6, pp 1136–1142 | Cite as

Osteochondral transplantation using autografts from the upper tibio-fibular joint for the treatment of knee cartilage lesions

  • João Espregueira-MendesEmail author
  • Hélder Pereira
  • Nuno Sevivas
  • Pedro Varanda
  • Manuel Vieira da Silva
  • Alberto Monteiro
  • Joaquim M. Oliveira
  • Rui L. Reis
Knee

Abstract

Purpose

Treatment of large cartilage lesions of the knee in weight-bearing areas is still a controversy and challenging topic. Autologous osteochondral mosaicplasty has proven to be a valid option for treatment but donor site morbidity with most frequently used autografts remains a source of concern. This study aims to assess clinical results and safety profile of autologous osteochondral graft from the upper tibio-fibular joint applied to reconstruct symptomatic osteochondral lesions of the knee.

Methods

Thirty-one patients (22 men and 9 women) with grade 4 cartilage lesions in the knee were operated by mosaicplasty technique using autologous osteochondral graft from the upper tibio-fibular joint, between 1998 and 2006. Clinical assessment included visual analog scale (VAS) for pain and Lysholm score. All patients were evaluated by MRI pre- and post-operatively regarding joint congruency as good, fair (inferior to 1 mm incongruence), and poor (incongruence higher than 1 mm registered in any frame). Donor zone status was evaluated according to specific protocol considering upper tibio-fibular joint instability, pain, neurological complications, lateral collateral ligament insufficiency, or ankle complaints.

Results

Mean age at surgery was 30.1 years (SD 12.2). In respect to lesion sites, 22 were located in weight-bearing area of medial femoral condyle, 7 in lateral femoral condyle, 1 in trochlea, and 1 in patella. Mean follow-up was 110.1 months (SD 23.2). Mean area of lesion was 3.3 cm2 (SD 1.7), and a variable number of cylinders were used, mean 2.5 (SD 1.3). Mean VAS score improved from 47.1 (SD 10.1) to 20.0 (SD 11.5); p = 0.00. Similarly, mean Lysholm score increased from 45.7 (SD 4.5) to 85.3 (SD 7.0); p = 0.00. The level of patient satisfaction was evaluated, and 28 patients declared to be satisfied/very satisfied and would do surgery again, while 3 declared as unsatisfied with the procedure and would not submit to surgery again. These three patients had lower clinical scores and kept complaints related to the original problem but unrelated to donor zone. MRI score significantly improved at 18–24 months comparing with pre-operative (p = 0.004). No radiographic or clinical complications related to donor zone with implication in activity were registered.

Conclusions

This work corroborates that mosaicplasty technique using autologous osteochondral graft from the upper tibio-fibular joint is effective to treat osteochondral defects in the knee joint. No relevant complications related to donor zone were registered.

Level of evidence

Case series, Level IV.

Keywords

Autografts Cartilage Mosaicplasty Osteochondral Upper tibio-fibular joint 

References

  1. 1.
    Ahmad CS, Cohen ZA, Levine WN, Ateshian GA, Mow VC (2001) Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med 29(2):201–206PubMedGoogle Scholar
  2. 2.
    Bartz RL, Kamaric E, Noble PC, Lintner D, Bocell J (2001) Topographic matching of selected donor and recipient sites for osteochondral autografting of the articular surface of the femoral condyles. Am J Sports Med 29(2):207–212PubMedGoogle Scholar
  3. 3.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Eng J Med 331(14):889–895CrossRefGoogle Scholar
  4. 4.
    Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(2):58–69PubMedGoogle Scholar
  5. 5.
    Che JH, Zhang ZR, Li GZ, Tan WH, Bai XD, Qu FJ (2010) Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits. Knee Surg Sports Traumatol Arthrosc 18(4):496–503PubMedCrossRefGoogle Scholar
  6. 6.
    Coventry MB (1965) Osteotomy of the upper portion of the tibia for degenerative arthritis of the knee: a preliminary report. J Bone Joint Surg Am 47(5):984–990PubMedGoogle Scholar
  7. 7.
    Dozin B, Malpeli M, Cancedda R, Bruzzi P, Calcagno S, Molfetta L, Priano F, Kon E, Marcacci M (2005) Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: a multicentered randomized clinical trial. Clin J Sport Med 15(4):220–226PubMedCrossRefGoogle Scholar
  8. 8.
    Espregueira-Mendes JD, Cabral T, Teles C, da Silva B, Lima P (1983) Tratamento de Osteocondrite Dissecante do joelho com um novo enxerto osteocartilagineo de peróneo—a propósito de um caso clinico. Revista Portuguesa de Ortopedia e Traumatologia 1(2):181–183Google Scholar
  9. 9.
    Espregueira-Mendes JD, da Silva MV (2006) Anatomy of the proximal tibiofibular joint. Knee Surg Sports Traumatol Arthrosc 14(3):241–249PubMedCrossRefGoogle Scholar
  10. 10.
    Filardo G, Kon E, Buda R, Timoncini A, Di Martino A, Cenacchi A, Fornasari PM, Giannini S, Marcacci M (2011) Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc 19(4):528–535PubMedCrossRefGoogle Scholar
  11. 11.
    Hangody L, Dobos J, Baló E, Pánics G, Hangody LR, Berkes I (2010) Clinical experiences with autologous osteochondral mosaicplasty in anathletic population. Am J Sports Med 38(6):1125–1133PubMedCrossRefGoogle Scholar
  12. 12.
    Hangody L, Fules P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 85-A(2):25–32PubMedGoogle Scholar
  13. 13.
    Hangody L, Rathonyi GK, Duska Z, Vasarhelyi G, Fules P, Modis L (2004) Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg Am 86(1):65–72PubMedGoogle Scholar
  14. 14.
    Jerosch J, Filler TJ, Peuker ET (2002) The cartilage of the tibiofibular joint: a source for autologous osteochondral grafts without damaging weight-bearing joint surfaces. Arch Orthop Trauma Surg 122(4):217–221PubMedCrossRefGoogle Scholar
  15. 15.
    Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89(10):2105–2112PubMedCrossRefGoogle Scholar
  16. 16.
    Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O (2004) Autologous chondrocyte implantation compared with microfracture in the knee. a randomized trial. J Bone Joint Surg Am 86-A(3):455–464PubMedGoogle Scholar
  17. 17.
    Kock NB, van Tankeren E, Oyen WJ, Wymenga AB, van Susante JL (2010) Bone scintigraphy after osteochondral autograft transplantation in the knee: 13 patients followed for 4 years. Acta Orthop 81(2):206–210PubMedCrossRefGoogle Scholar
  18. 18.
    Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G, Pignotti E, Marcacci M (2009) Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37(1):156S–166SPubMedCrossRefGoogle Scholar
  19. 19.
    Kordas G, Szabo JS, Hangody L (2005) The effect of drill-hole length on the primary stability of osteochondral grafts in mosaicplasty. Orthopedics 28(4):401–404PubMedGoogle Scholar
  20. 20.
    Lima EG, Mauck RL, Han SH, Park S, Ng KW, Ateshian GA, Hung CT (2004) Functional tissue engineering of chondral and osteochondral constructs. Biorheology 41(3–4):577–590PubMedGoogle Scholar
  21. 21.
    Lintz F, Pujol N, Pandeirada C, Boisrenoult P, Beaufils P (2011) Hybrid fixation: evaluation of a novel technique in adult osteochondritis dissecans of the knee. Knee Surg Sports Traumatol Arthrosc 19(4):568–571PubMedCrossRefGoogle Scholar
  22. 22.
    Maffulli N, Spiezia F, Oliva F, Testa V, Capasso G, Denaro V (2010) Gracilis autograft for recurrent posttraumatic instability of the superior tibiofibular joint. Am J Sports Med 38(11):2294–2298PubMedCrossRefGoogle Scholar
  23. 23.
    Miskovsky S, Kaeding C, Weis L (2004) Proximal tibiofibular joint ganglion cysts: excision, recurrence, and joint arthrodesis. Am J Sports Med 32(4):1022–1028PubMedCrossRefGoogle Scholar
  24. 24.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27(36):6123–6137PubMedCrossRefGoogle Scholar
  25. 25.
    Orth P, Kaul G, Cucchiarini M, Zurakowski D, Menger MD, Kohn D, Madry H (2011) Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg Sports Traumatol Arthros 19(12):2119–2130CrossRefGoogle Scholar
  26. 26.
    Pridie KH (1959) A method of resurfacing osteoarthritic knee joint. J Bone Joint Surg Br 41-B:618–619Google Scholar
  27. 27.
    Radakovich M, Malone TR (1982) The superior tibiofibular joint: the forgotten joint. J Orthop Sports Phys Ther 3(3):129–132PubMedGoogle Scholar
  28. 28.
    Reddy S, Pedowitz DI, Parekh SG, Sennett BJ, Okereke E (2007) The morbidity associated with osteochondral harvest from asymptomatic knees for the treatment of osteochondral lesions of the talus. Am J Sports Med 35(1):80–85PubMedCrossRefGoogle Scholar
  29. 29.
    Rose T, Craatz S, Hepp P, Raczynski C, Weiss J, Josten C, Lill H (2005) The autologous osteochondral transplantation of the knee: clinical results, radiographic findings and histological aspects. Arch Orthop Trauma Surg 125(9):628–637PubMedCrossRefGoogle Scholar
  30. 30.
    Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46(9):2524–2534PubMedCrossRefGoogle Scholar
  31. 31.
    Sekiya JK, Kuhn JE (2003) Instability of the proximal tibiofibular joint. J Am Acad Orthop Surg 11(2):120–128PubMedGoogle Scholar
  32. 32.
    Siparsky P, Ryzewicz M, Peterson B, Bartz R (2007) Arthroscopic treatment of osteoarthritis of the knee: are there any evidence-based indications? Clin Orthop Relat Res 455:107–112PubMedCrossRefGoogle Scholar
  33. 33.
    Smith GD, Richardson JB, Brittberg M, Erggelet C, Verdonk R, Knutsen G, Ashton BA, Ashton IK, Harrison PE (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. J Bone Joint Surg Am 85-A(12):2487–2488PubMedGoogle Scholar
  34. 34.
    Spahn G, Kahl E, Muckley T, Hofmann GO, Klinger HM (2008) Arthroscopic knee chondroplasty using a bipolar radiofrequency-based device compared to mechanical shaver: results of a prospective, randomized, controlled study. Knee Surg Sports Traumatol Arthrosc 16(6):565–573PubMedCrossRefGoogle Scholar
  35. 35.
    Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19(5):477–484PubMedCrossRefGoogle Scholar
  36. 36.
    Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391(Suppl):S362–S369PubMedCrossRefGoogle Scholar
  37. 37.
    Valderrabano V, Leumann A, Rasch H, Egelhof T, Hintermann B, Pagenstert G (2009) Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. Am J Sports Med 37(1):105S–111SPubMedCrossRefGoogle Scholar
  38. 38.
    Vasiliadis HS, Wasiak J (2010) Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev (10):CD003323. doi: 10.1002/14651858.CD003323.pub3
  39. 39.
    Weinert CR, Jr, Raczka R (1986) Recurrent dislocation of the superior tibiofibular joint. Surgical stabilization by ligament reconstruction. J Bone Joint Surg Am 68(1):126–128PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • João Espregueira-Mendes
    • 1
    • 2
    • 3
    Email author
  • Hélder Pereira
    • 1
    • 2
    • 3
    • 4
  • Nuno Sevivas
    • 1
    • 3
    • 5
  • Pedro Varanda
    • 1
    • 3
    • 5
  • Manuel Vieira da Silva
    • 1
    • 3
    • 5
  • Alberto Monteiro
    • 1
  • Joaquim M. Oliveira
    • 2
    • 3
  • Rui L. Reis
    • 2
    • 3
  1. 1.Saúde Atlântica Sports Center–F.C. Porto StadiumMinho University and Porto UniversityPortoPortugal
  2. 2.3B’s Research Group-Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineTaipasPortugal
  3. 3.ICVS/3B’s-PT Government Associate LaboratoryBragaPortugal
  4. 4.Orthopedic Department Centro Hospitalar Póvoa de VarzimVila do CondePortugal
  5. 5.Orthopedic Department Hospital de BragaBragaPortugal

Personalised recommendations