Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 20, Issue 7, pp 1357–1365 | Cite as

Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model

  • Matthew B. Fisher
  • Rui Liang
  • Ho-Joong Jung
  • Kwang E. Kim
  • Giovanni Zamarra
  • Alejandro J. Almarza
  • Patrick J. McMahon
  • Savio L-Y. WooEmail author
Experimental Study

Abstract

Purpose

Biological augmentation to heal a torn anterior cruciate ligament (ACL) has gained significant interest. This study examined the potential advantages of using extracellular matrix (ECM) bioscaffolds from galactosyl-α(1,3)galactose deficient pigs to heal the transected ACL.

Methods

In 16 skeletally mature goats, the ACL in the right hindlimb was transected and repaired. In 9 of these animals, an ECM sheet was wrapped around the injury site and with an ECM hydrogel injected into the transected site. The remaining 7 animals were treated with suture repair only. The left hindlimb served as a sham-operated control.

Results

After 12 weeks, the healing ACL in the ECM-treated group showed an abundance of continuous neo-tissue formation, while only limited tissue growth was found after suture repair only. The cross-sectional area of the ACL from the ECM-treated group was similar to sham-operated controls (n.s.) and was 4.5 times those of the suture repair group (P < 0.05). The stiffness of the femur-ACL-tibia complexes from the ECM-treated group was 2.4 times those of the suture repair group (P < 0.05). Furthermore, these values reached 48% of the sham-operated controls (53 ± 19 N/mm and 112 ± 21 N/mm, respectively, P < 0.05).

Conclusions

The application of an ECM bioscaffold and hydrogel was found to accelerate the healing of a transected ACL following suture repair in the goat model with limited tissue hypertrophy and improvement in some of its biomechanical properties. Although more work is necessary to fully restore the function of the normal ACL, these early results offer a potential new approach to aid ACL healing.

Keywords

Anterior cruciate ligament (ACL) Functional tissue engineering Extracellular matrix (ECM) bioscaffolds Biomechanics Robotic testing system 

Notes

Acknowledgments

Financial support provided by the McGowan Institute for Regenerative Medicine, Commonwealth of Pennsylvania, the National Institutes of Health (T32 EB0003392), and the National Science Foundation Engineering Research Center Grant (#0812348). The authors thank Dr. John Bianchi of Revivicor, Inc. for providing the small intestines from the GalSafe™ pigs.

References

  1. 1.
    Abramowitch SD, Papageorgiou CD, Withrow JD, Gilbert TW, Woo SL-Y (2003) The effect of initial graft tension on the biomechanical properties of a healing ACL replacement graft: a study in goats. J Orthop Res 21(4):708–715PubMedCrossRefGoogle Scholar
  2. 2.
    Agung M, Ochi M, Yanada S et al (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 14(12):1307–1314PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson AF, Snyder RB, Lipscomb AB Jr (2001) Anterior cruciate ligament reconstruction. A prospective randomized study of three surgical methods. Am J Sports Med 29(3):272–279PubMedGoogle Scholar
  4. 4.
    Anitua E, Sanchez M, Orive G, Andia I (2007) The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. Biomaterials 28(31):4551–4560PubMedCrossRefGoogle Scholar
  5. 5.
    Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28(25):3587–3593PubMedCrossRefGoogle Scholar
  6. 6.
    Chen G, Qian H, Starzl T et al (2005) Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 11(12):1295–1298PubMedCrossRefGoogle Scholar
  7. 7.
    Cummings JF, Grood ES (2002) The progression of anterior translation after anterior cruciate ligament reconstruction in a caprine model. J Orthop Res 20(5):1003–1008PubMedCrossRefGoogle Scholar
  8. 8.
    Dai Y, Vaught TD, Boone J et al (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20(3):251–255PubMedCrossRefGoogle Scholar
  9. 9.
    Drogset JO, Grontvedt T, Robak OR et al (2006) A 16-year follow-up of three operative techniques for the treatment of acute ruptures of the anterior cruciate ligament. J Bone Jt Surg Am 88(5):944–952CrossRefGoogle Scholar
  10. 10.
    Feagin JA Jr, Curl WW (1976) Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med 4(3):95–100PubMedCrossRefGoogle Scholar
  11. 11.
    Fisher MB, Jung HJ, McMahon PJ, Woo SL-Y (2010) Evaluation of bone tunnel placement for suture augmentation of an injured anterior cruciate ligament: effects on joint stability in a goat model. J Orthop Res 28(10):1373–1379PubMedCrossRefGoogle Scholar
  12. 12.
    Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF (2008) Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29(11):1630–1637PubMedCrossRefGoogle Scholar
  13. 13.
    Gilbert TW, Stolz DB, Biancaniello F, Simmons-Byrd A, Badylak SF (2005) Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials 26(12):1431–1435PubMedCrossRefGoogle Scholar
  14. 14.
    Gobbi A, Bathan L, Boldrini L (2009) Primary repair combined with bone marrow stimulation in acute anterior cruciate ligament lesions: results in a group of athletes. Am J Sports Med 37(3):571–578PubMedCrossRefGoogle Scholar
  15. 15.
    Iannotti JP, Codsi MJ, Kwon YW et al (2006) Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Jt Surg Am 88(6):1238–1244CrossRefGoogle Scholar
  16. 16.
    Jomha NM, Borton DC, Clingeleffer AJ, Pinczewski LA (1999) Long-term osteoarthritic changes in anterior cruciate ligament reconstructed knees. Clin Orthop Relat Res 358:188–193PubMedCrossRefGoogle Scholar
  17. 17.
    Joshi SM, Mastrangelo AN, Magarian EM, Fleming BC, Murray MM (2009) Collagen-platelet composite enhances biomechanical and histologic healing of the porcine anterior cruciate ligament. Am J Sports Med 37(12):2401–2410PubMedCrossRefGoogle Scholar
  18. 18.
    Kaplan N, Wickiewicz TL, Warren RF (1990) Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med 18(4):354–358PubMedCrossRefGoogle Scholar
  19. 19.
    Karaoglu S, Fisher MB, Woo SL-Y et al (2008) Use of a bioscaffold to improve healing of a patellar tendon defect after graft harvest for ACL reconstruction: a study in rabbits. J Orthop Res 26(2):255–263PubMedCrossRefGoogle Scholar
  20. 20.
    Kuwaki K, Tseng YL, Dor FJ et al (2005) Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11(1):29–31PubMedCrossRefGoogle Scholar
  21. 21.
    Lee TQ, Woo SL-Y (1988) A new method for determining cross-sectional shape and area of soft tissues. J Biomech Eng 110(2):110–114PubMedCrossRefGoogle Scholar
  22. 22.
    Li G, Van de Velde SK, Bingham JT (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41(7):1616–1622PubMedCrossRefGoogle Scholar
  23. 23.
    Liang R, Fisher M, Yang G, Hall C, Woo SL-Y (2011) Alpha1,3-galactosyltransferase knockout does not alter the properties of porcine extracellular matrix bioscaffolds. Acta Biomater 7(4):1719–1727PubMedCrossRefGoogle Scholar
  24. 24.
    Liang R, Woo SL-Y, Takakura Y et al (2006) Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: a functional tissue engineering study. J Orthop Res 24(4):811–819PubMedCrossRefGoogle Scholar
  25. 25.
    Livesay GA, Fujie H, Kashiwaguchi S et al (1995) Determination of the in situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng 23(4):467–474PubMedCrossRefGoogle Scholar
  26. 26.
    Ma CB, Papageogiou CD, Debski RE, Woo SL-Y (2000) Interaction between the ACL graft and MCL in a combined ACL + MCL knee injury using a goat model. Acta Orthop Scand 71(4):387–393PubMedCrossRefGoogle Scholar
  27. 27.
    Malcarney HL, Bonar F, Murrell GA (2005) Early inflammatory reaction after rotator cuff repair with a porcine small intestine submucosal implant: a report of 4 cases. Am J Sports Med 33(6):907–911PubMedCrossRefGoogle Scholar
  28. 28.
    Ng GY, Oakes BW, Deacon OW, McLean ID, Lampard D (1995) Biomechanics of patellar tendon autograft for reconstruction of the anterior cruciate ligament in the goat: 3-year study. J Orthop Res 13(4):602–608PubMedCrossRefGoogle Scholar
  29. 29.
    Papageorgiou CD, Gil JE, Kanamori A et al (2001) The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 29(2):226–231PubMedGoogle Scholar
  30. 30.
    Phelps CJ, Koike C, Vaught TD et al (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299(5605):411–414PubMedCrossRefGoogle Scholar
  31. 31.
    Reing JE, Zhang L, Myers-Irvin J et al (2009) Degradation products of extracellular matrix affect cell migration and proliferation. Tiss Eng Part A 15(3):605–614. doi: 10.1089/ten.tea.2007.0425 CrossRefGoogle Scholar
  32. 32.
    Sakane M, Livesay GA, Fox RJ et al (1999) Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surg Sports Traumatol Arthrosc 7(2):93–97PubMedCrossRefGoogle Scholar
  33. 33.
    Scherping SC Jr, Schmidt CC, Georgescu HI et al (1997) Effect of growth factors on the proliferation of ligament fibroblasts from skeletally mature rabbits. Connect Tiss Res 36(1):1–8CrossRefGoogle Scholar
  34. 34.
    Spindler KP, Kuhn JE, Freedman KB et al (2004) Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systematic review. Am J Sports Med 32(8):1986–1995PubMedCrossRefGoogle Scholar
  35. 35.
    Steadman JR, Cameron-Donaldson ML, Briggs KK, Rodkey WG (2006) A minimally invasive technique (“healing response”) to treat proximal ACL injuries in skeletally immature athletes. J Knee Surg 19(1):8–13PubMedGoogle Scholar
  36. 36.
    Torry MR, Shelburne KB, Peterson DS et al (2011) Knee kinematic profiles during drop landings: a biplane fluoroscopy study. Med Sci Sports Exerc 43(3):533–541PubMedCrossRefGoogle Scholar
  37. 37.
    Vorotnikova E, McIntosh D, Dewilde A et al (2010) Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol 29(8):690–700PubMedCrossRefGoogle Scholar
  38. 38.
    Warren RF (1983) Primary repair of the anterior cruciate ligament. Clin Orthop Relat Res 172:65–70PubMedGoogle Scholar
  39. 39.
    Wiig ME, Amiel D, VandeBerg J et al (1990) The early effect of high molecular weight hyaluronan (hyaluronic acid) on anterior cruciate ligament healing: an experimental study in rabbits. J Orthop Res 8(3):425–434PubMedCrossRefGoogle Scholar
  40. 40.
    Woo SL-Y, Abramowitch SD, Kilger R, Liang R (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39(1):1–20PubMedCrossRefGoogle Scholar
  41. 41.
    Woo SL-Y, Danto MI, Ohland KJ, Lee TQ, Newton PO (1990) The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: a comparative study with two existing methods. J Biomech Eng 112(4):426–431PubMedCrossRefGoogle Scholar
  42. 42.
    Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex: the effects of specimen age and orientation. Am J Sports Med 19(3):217–225PubMedCrossRefGoogle Scholar
  43. 43.
    Woo SL-Y, Peterson RH, Ohland KJ, Sites TJ, Danto MI (1990) The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits: a biomechanical and histological study. J Orthop Res 8(5):712–721PubMedCrossRefGoogle Scholar
  44. 44.
    Woo SL-Y, Takakura Y, Liang R, Jia F, Moon DK (2006) Treatment with bioscaffold enhances the fibril morphology and the collagen composition of healing medial collateral ligament in rabbits. Tiss Eng 12(1):159–166CrossRefGoogle Scholar
  45. 45.
    Yamada K, Yazawa K, Shimizu A et al (2005) Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 11(1):32–34PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Matthew B. Fisher
    • 1
  • Rui Liang
    • 1
  • Ho-Joong Jung
    • 1
    • 2
  • Kwang E. Kim
    • 1
  • Giovanni Zamarra
    • 1
  • Alejandro J. Almarza
    • 1
  • Patrick J. McMahon
    • 1
  • Savio L-Y. Woo
    • 1
    Email author
  1. 1.Department of Bioengineering, Musculoskeletal Research Center, Swanson School of EngineeringUniversity of PittsburghPittsburghUSA
  2. 2.Department of Orthopaedic Surgery, College of MedicineChung-Ang UniversitySeoulKorea

Personalised recommendations