Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 20, Issue 7, pp 1268–1275

Internal tibial rotation during in vivo, dynamic activity induces greater sliding of tibio-femoral joint contact on the medial compartment




Although extensive research has been conducted on rotational kinematics, the internal/external rotation of the tibio-femoral joint is perhaps less important for protecting joint health than its effect on joint contact mechanics. The purpose of this study was to evaluate tibio-femoral joint contact paths during a functional activity (running) and investigate the relationship between these arthrokinematic measures and traditional kinematics (internal/external rotation).


Tibio-femoral motion was assessed for the contralateral (uninjured) knees of 29 ACL-reconstructed individuals during downhill running, using dynamic stereo X-ray combined with three-dimensional CT bone models to produce knee kinematics and dynamic joint contact paths. The joint contact sliding length was estimated by comparing femoral and tibial contact paths. The difference in sliding length between compartments was compared to knee rotation.


Sliding length was significantly larger on the medial side (10.2 ± 3.8 mm) than the lateral side (2.3 ± 4.0 mm). The difference in sliding length between compartments (mean 7.8 ± 3.0 mm) was significantly correlated with internal tibial rotation (P < 0.01, R2 = 0.74).


The relationship between rotational knee kinematics and joint contact paths was specifically revealed as greater tibial internal rotation was associated with larger magnitude of sliding motion in the medial compartment. This could suggest that lateral pivot movement occurs during running.

Clinical relevance

Rotational kinematics abnormality should be treated for restoring normal balance of joint sliding between medial and lateral compartments and preventing future osteoarthritis.

Level of evidence

Prognostic studies, Level II.


Dynamic stereo radiography Knee kinematics Joint contact Running activity Lateral pivot movement 


  1. 1.
    Anderst WJ, Les C, Tashman S (2005) In vivo serial joint space measurement during dynamic loading in a canine model of osteoarthritis. Osteoarthr Cartil 13(9):808–816PubMedCrossRefGoogle Scholar
  2. 2.
    Anderst WJ, Tashman S (2010) Using relative velocity vectors to reveal axial rotation about the medial and lateral compartment of the knee. J Biomech 43(5):994–997PubMedCrossRefGoogle Scholar
  3. 3.
    Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31(1):10–16PubMedCrossRefGoogle Scholar
  4. 4.
    Andriacchi TP, Briant PL, Bevill SL, Koo S (2006) Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res 442:39–44PubMedCrossRefGoogle Scholar
  5. 5.
    Andriacchi TP, Mündermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32(3):447–457PubMedCrossRefGoogle Scholar
  6. 6.
    Asano T, Akagi M, Tanaka K, Tamura J, Nakamura T (2001) In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop Relat Surg 388:157–166CrossRefGoogle Scholar
  7. 7.
    Bedi A, Musahl V, Steuber V, Kendoff D, Choi D, Allen AA, Pearle AD, Altchek DW (2011) Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy 27(3):380–390PubMedCrossRefGoogle Scholar
  8. 8.
    Blaha JD (2004) The rationale for a total knee implant that confers anteroposterior stability throughout range of motion. J Arthroplasty 19(4 Suppl 1):22–26PubMedCrossRefGoogle Scholar
  9. 9.
    Blaha JD, Mancinelli CA, Simons WH, Kish VL, Thyagarajan G (2003) Kinematics of the human knee using an open chain cadaver model. Clin Orthop Relat Res 410:25–34PubMedCrossRefGoogle Scholar
  10. 10.
    Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118PubMedCrossRefGoogle Scholar
  11. 11.
    DeFrate LE, Sun H, Gill TJ, Rubash HE, Li G (2004) In vivo tibiofemoral contact analysis using 3D MRI-based knee models. J Biomech 37(10):1499–1504PubMedCrossRefGoogle Scholar
  12. 12.
    Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38(2):241–253PubMedCrossRefGoogle Scholar
  13. 13.
    Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38(2):197–208PubMedCrossRefGoogle Scholar
  14. 14.
    Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31(1):75–79PubMedGoogle Scholar
  15. 15.
    Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N (2007) Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res 454:89–94PubMedCrossRefGoogle Scholar
  16. 16.
    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105(2):136–144PubMedCrossRefGoogle Scholar
  17. 17.
    Hamai S, Moro-oka TA, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA (2009) Knee kinematics in medial osteoarthritis during in vivo weight-bearing activities. J Orthop Res 27(12):1555–1561PubMedCrossRefGoogle Scholar
  18. 18.
    Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemroal movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg [Br] 82(8):1196–1198CrossRefGoogle Scholar
  19. 19.
    Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg [Br] 82(8):1189–1195CrossRefGoogle Scholar
  20. 20.
    Isberg J, Faxén E, Laxdal G, Eriksson BI, Kärrholm J, Karlsson J (2011) Will early reconstruction prevent abnormal kinematics after ACL injury? Two-year follow-up using dynamic radiostereometry in 14 patients operated with hamstring autografts. Knee Surg Sports Traumatol Arthrosc 19(10):1634–1642PubMedCrossRefGoogle Scholar
  21. 21.
    Johal P, Williams A, Wragg P, Hunt D, Gedroyc W (2005) Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech 38(2):269–276PubMedCrossRefGoogle Scholar
  22. 22.
    Koo S, Andriacchi TP (2008) The knee joint center of rotation is predominantly on the lateral side during normal walking. J Biomech 41(6):1269–1273PubMedCrossRefGoogle Scholar
  23. 23.
    Komistek RD, Dennis DA, Mahfouz M (2003) In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res 410:69–81PubMedCrossRefGoogle Scholar
  24. 24.
    Kozanek M, Hosseini A, Liu F, Van de Velde SK, Gill TJ, Rubash HE, Li G (2009) Tibiofemoral kinematics and condylar motion during the stance phase of gait. J Biomech 42(12):1877–1884PubMedCrossRefGoogle Scholar
  25. 25.
    Kozanek M, Ven de Velde SK, Gill TJ, Li G (2008) The contralateral knee joint in cruciate ligament deficiency. Am J Sports Med 36(11):2151–2157PubMedCrossRefGoogle Scholar
  26. 26.
    Kuster M, Wood GA, Sakurai S, Blatter G (1994) Downhill walking: a stressful task for the anterior cruciate ligament? A biomechanical study with clinical implications. Knee Surg Sports Traumatol Arthrosc 2(1):2–7PubMedCrossRefGoogle Scholar
  27. 27.
    Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ (2006) Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg [Am] 88(8):1826–1834CrossRefGoogle Scholar
  28. 28.
    Minetti AE, Boldrini L, Brusamolin L, Zamparo P, McKee T (2003) A feedback-controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and running in humans. J Appl Physiol 95(2):838–843PubMedGoogle Scholar
  29. 29.
    Minetti AE, Moia C, Roi GS, Susta D, Ferretti G (2002) Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol 93(3):1039–1046PubMedGoogle Scholar
  30. 30.
    Moonot P, Shang M, Railton GT, Field RE, Banks SA (2010) In vivo weight-bearing kinematics with medial rotation knee arthroplasty. Knee 17(1):33–37PubMedCrossRefGoogle Scholar
  31. 31.
    Moro-oka TA, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA (2008) Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res 26(4):428–434PubMedCrossRefGoogle Scholar
  32. 32.
    Ristanis S, Giakas G, Papageorgiou CD, Moraiti T, Stergiou N, Georgoulis AD (2003) The effects of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending stairs. Knee Surg Sports Traumatol Arthrosc 11(6):360–365PubMedCrossRefGoogle Scholar
  33. 33.
    Ristanis S, Stergiou N, Patras K, Vasiliadis HS, Giakas G, Georgoulis AD (2005) Excessive tibial rotation during high-demanding activity is not restored by anterior cruciate ligament reconstruction. Arthroscopy 21(11):1323–1329PubMedCrossRefGoogle Scholar
  34. 34.
    Scarvell JM, Smith PN, Refshauge KM, Galloway HR, Woods KR (2004) Comparison of kinematic analysis by mapping tibiofemoral contact with movement of the femoral condylar centres in healthy and anterior cruciate ligament injured knees. J Orthop Res 22(5):955–962PubMedCrossRefGoogle Scholar
  35. 35.
    Schmidt R, Komistek RD, Blaha JD, Penenberg BL, Maloney WJ (2003) Fluoroscopic analyses of cruciate-retaining and medial pivot knee implants. Clin Orthop Relat Res 410:139–147PubMedCrossRefGoogle Scholar
  36. 36.
    Scott SH, Winter DA (1990) Internal forces of chronic running injury sites. Med Sci Sports Exerc 22(3):357–369PubMedGoogle Scholar
  37. 37.
    Shaw JA, Murray DG (1976) The longitudinal axis of the knee and the role of the cruciate ligaments in controlling transverse rotation. J Bone Joint Surg [Am] 56(8):1603–1609Google Scholar
  38. 38.
    Shefelbine SJ, Ma CB, Lee KY, Schrumpf MA, Patel P, Safran MR, Slavinsky JP, Majumdar S (2006) MRI analysis of in vivo meniscal and tibiofemoral kinematics in ACL-deficient and normal knees. J Orthop Res 24(6):1208–1217PubMedCrossRefGoogle Scholar
  39. 39.
    Stergiou N, Ristanis S, Moraiti C, Georgoulis AD (2007) Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees: a theoretical proposition for the development of osteoarthritis. Sports Med 37(7):601–613PubMedCrossRefGoogle Scholar
  40. 40.
    Tashman S, Anderst W (2003) In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J Biomech 125(2):238–245CrossRefGoogle Scholar
  41. 41.
    Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983PubMedCrossRefGoogle Scholar
  42. 42.
    Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73PubMedCrossRefGoogle Scholar
  43. 43.
    Van de Velde SK, Gill TJ, Li G (2009) Evaluation of kinematics of anterior cruciate ligament-deficient knees with use of advanced imaging techniques, three-dimensional modeling techniques, and robotics. J Bone Joint Surg [Am] 91(Suppl 1):108–114CrossRefGoogle Scholar
  44. 44.
    Walker PS, Heller Y, Cleary DJ, Yildirim G (2011) Preclinical evaluation method for total knees designed to restore normal knee mechanics. J Arthroplast 26(1):152–160CrossRefGoogle Scholar
  45. 45.
    Yamaguchi S, Gamada K, Sasho T, Kato H, Sonoda M, Banks SA (2009) In vivo kinematics of anterior cruciate ligament deficient knees during pivot and squat activities. Clin Biomech (Bristol, Avon) 24(1):71–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery, Orthopaedic Research LaboratoriesUniversity of PittsburghPittsburghUSA

Personalised recommendations