Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 20, Issue 8, pp 1488–1495 | Cite as

Forces acting on the anterior meniscotibial ligaments

  • Andreas SeitzEmail author
  • Riza Kasisari
  • Lutz Claes
  • Anita Ignatius
  • Lutz Dürselen
Knee

Abstract

Purpose

The purpose of this study was to investigate the forces occurring in human anterior meniscotibial attachment structures under various loading conditions.

Methods

Twelve human knee joints were exposed to eight loading conditions (tibial rotations and varus/valgus stress) using a previously described knee joint simulator. Subsequently, the joints were axially compressed (1,000 N at 0° 30° and 60° knee flexion) using a materials testing machine. Then, we performed a tensile test to failure of the ligaments. Finally, we used the strains that occurred during the loading tests and the force–elongation diagrams obtained from the tensile test to recursively assess the resulting forces.

Results

In the anterior meniscotibial ligaments, we found maximum mean strains of 3.8 ± 2.3% under external moments and 1.5 ± 0.9% for axial compression. With an ultimate load of 454 ± 220 N for the anterolateral meniscotibial ligament and 397 ± 275 N for the anteromedial meniscotibial ligament, we estimated maximum forces of up to 50.2 N for the knee simulator tests and 22.6 N for the axial compression tests.

Conclusions

The low forces found in the meniscal ligaments suggest that for normal daily activities, meniscal replacement implants and allografts do not require a very rigid fixation at their bony insertions. However, it remains unknown, what level of force occurs in the meniscotibial ligaments under traumatic situations or impact knee loads. Furthermore, the results of the present study could help to optimize meniscal re-fixation and to improve the properties of meniscal replacement materials, such as tissue-engineered artificial menisci. Moreover, the results could be used for the validation of finite element models of the knee joint with the main focus on the meniscus and its biomechanical relevance for tibiofemoral contact pressure.

Keywords

Meniscotibial ligaments Meniscal attachments Forces Material properties Strain 

Notes

Acknowledgments

This study was funded by the German Research Foundation (DFG: DU254/5-1).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abraham AC, Moyer JT, Villegas DF, Odegard GM, Haut Donahue TL (2011) Hyperelastic properties of human meniscal attachments. J Biomech 44(3):413–418PubMedCrossRefGoogle Scholar
  2. 2.
    Burgess KE, Graham-Smith P, Pearson SJ (2009) Effect of acute tensile loading on gender-specific tendon structural and mechanical properties. J Orthop Res 27(4):510–516PubMedCrossRefGoogle Scholar
  3. 3.
    Chen MI, Branch TP, Hutton WC (1996) Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 12(2):174–181PubMedCrossRefGoogle Scholar
  4. 4.
    Dürselen L, Hehl G, Simnacher M, Kinzl L, Claes L (2001) Augmentation of a ruptured posterior cruciate ligament provides normal knee joint stability during ligament healing. Clin Biomech (Bristol, Avon) 16(3):222–228CrossRefGoogle Scholar
  5. 5.
    Dürselen L, Vögele S, Seitz AM, Ignatius A, Friederich NF, Bauer G, Majewski M (2011) Anterior knee laxity increases gapping of posterior horn medial meniscal tears. Am J Sports Med 39(8):1749–1755PubMedCrossRefGoogle Scholar
  6. 6.
    Goertzen D, Gillquist J, Messner K (1996) Tensile strength of the tibial meniscal attachments in the rabbit. J Biomed Mater Res 30(1):125–128PubMedCrossRefGoogle Scholar
  7. 7.
    Gomoll AH, Kang RW, Chen AL, Cole BJ (2009) Triad of cartilage restoration for unicompartmental arthritis treatment in young patients: meniscus allograft transplantation, cartilage repair and osteotomy. J Knee Surg 22(2):137–141PubMedCrossRefGoogle Scholar
  8. 8.
    Hauch KN, Villegas DF, Haut Donahue TL (2010) Geometry, time-dependent and failure properties of human meniscal attachments. J Biomech 43(3):463–468PubMedCrossRefGoogle Scholar
  9. 9.
    Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR (2003) How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech 36(1):19–34CrossRefGoogle Scholar
  10. 10.
    Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 82(8):1196–1198PubMedCrossRefGoogle Scholar
  11. 11.
    Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 82(8):1189–1195PubMedCrossRefGoogle Scholar
  12. 12.
    Kohn D, Moreno B (1995) Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy 11(1):96–103PubMedCrossRefGoogle Scholar
  13. 13.
    Kubo K, Kanehisa H, Fukunaga T (2003) Gender differences in the viscoelastic properties of tendon structures. Eur J Appl Physiol 88(6):520–526PubMedCrossRefGoogle Scholar
  14. 14.
    Kutzner I, Heinlein B, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Bergmann G (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43(11):2164–2173PubMedCrossRefGoogle Scholar
  15. 15.
    Maes JA, Haut Donahue TL (2006) Time dependent properties of bovine meniscal attachments: stress relaxation and creep. J Biomech 39(16):3055–3061PubMedCrossRefGoogle Scholar
  16. 16.
    Messner K, Verdonk R (1999) It is necessary to anchor the meniscal transplants with bone plugs? A mini-battle. Scand J Med Sci Sports 9(3):186–187PubMedCrossRefGoogle Scholar
  17. 17.
    Navarro-Holgado P, Cuevas-Perez A, Aguayo-Galeote MA, Carpintero-Benitez P (2007) Anterior medial meniscus detachment and anterior cruciate ligament tear. Knee Surg Sports Traumatol Arthrosc 15(5):587–590PubMedCrossRefGoogle Scholar
  18. 18.
    Onambele GN, Burgess K, Pearson SJ (2007) Gender-specific in vivo measurement of the structural and mechanical properties of the human patellar tendon. J Orthop Res 25(12):1635–1642PubMedCrossRefGoogle Scholar
  19. 19.
    Paletta GA Jr, Manning T, Snell E, Parker R, Bergfeld J (1997) The effect of allograft meniscal replacement on intraarticular contact area and pressures in the human knee. A biomechanical study. Am J Sports Med 25(5):692–698PubMedCrossRefGoogle Scholar
  20. 20.
    Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC (1989) Material properties of the normal medial bovine meniscus. J Orthop Res 7(6):771–782PubMedCrossRefGoogle Scholar
  21. 21.
    Stärke C, Kopf S, Grobel KH, Becker R (2009) Tensile forces at the porcine anterior meniscal horn attachment. J Orthop Res 27(12):1619–1624PubMedCrossRefGoogle Scholar
  22. 22.
    Sweigart MA, Zhu CF, Burt DM, DeHoll PD, Agrawal CM, Clanton TO, Athanasiou KA (2004) Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann Biomed Eng 32(11):1569–1579PubMedCrossRefGoogle Scholar
  23. 23.
    Thompson WO, Thaete FL, Fu FH, Dye SF (1991) Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 19 (3):210–215 (discussion 215–216)Google Scholar
  24. 24.
    Villegas DF, Maes JA, Magee SD, Donahue TL (2007) Failure properties and strain distribution analysis of meniscal attachments. J Biomech 40(12):2655–2662PubMedCrossRefGoogle Scholar
  25. 25.
    Wang YJ, Yu JK, Luo H, Yu CL, Ao YF, Xie X, Jiang D, Zhang JY (2009) An anatomical and histological study of human meniscal horn bony insertions and peri-meniscal attachments as a basis for meniscal transplantation. Chin Med J (Engl) 122(5):536–540Google Scholar
  26. 26.
    Yao J, Funkenbusch PD, Snibbe J, Maloney M, Lerner AL (2006) Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. J Biomech Eng 128(3):399–408PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Andreas Seitz
    • 1
    Email author
  • Riza Kasisari
    • 1
  • Lutz Claes
    • 1
  • Anita Ignatius
    • 1
  • Lutz Dürselen
    • 1
  1. 1.Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research UlmUlm UniversityUlmGermany

Personalised recommendations