Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 20, Issue 7, pp 1323–1330 | Cite as

Optimal measurement of clinical rotational test for evaluating anterior cruciate ligament insufficiency

  • Yuichi Hoshino
  • Ryosuke KurodaEmail author
  • Kouki Nagamune
  • Daisuke Araki
  • Seiji Kubo
  • Motoi Yamaguchi
  • Masahiro Kurosaka
Knee

Abstract

Purpose

Rotational instability in ACL insufficient knee addresses the symptom or the abnormal motion which can be reproduced and subjectively evaluated in the clinical exam. Clinically available quantitative measurement for this instability has not been established due to mixed testing maneuvers and complex kinematics. The purpose was to measure knee kinematics during three manually performed rotational tests and to determine the optimal method to detect the abnormality in ACL deficient knees.

Method

Thirteen unilateral ACL deficient patients were tested by internal and external pure rotational stress tests and pivot shift test under anesthesia before scheduled ACL reconstructions. Rotation and coupled motion, i.e., tibial anteroposterior translation, were measured using an electromagnetic measurement system. Additionally, the acceleration of the tibial posterior translation during pivot shift test was calculated. The differences of these parameters between ACL intact and deficient knees were tested.

Results

Knee rotation is not different between ACL intact and deficient during both pure rotational stress test and pivot shift test. The coupled anterior tibial translation during pivot shift test was significantly different between ACL intact, 13.5 ± 4.1 mm, and deficient knees, 23.1 ± 4.4 mm, (P < 0.01) as well as the acceleration of the tibial posterior translation (1.1 ± 0.4 m/sec2 in intact knees, 3.2 ± 1.5 m/sec2 in deficient knees; P < 0.01). The coupled motion during pure rotational stress tests was similar regardless of ACL condition.

Conclusion

The rotational instability of the ACL deficiency was reproduced only by the pivot shift test and detected only by measuring the tibial anteroposterior translation and acceleration of the tibial posterior reduction.

Level of evidence Diagnostic study, Level III.

Keywords

Rotational instability Pivot shift test Electromagnetic device ACL injury 

Notes

Acknowledgments

The authors declared that they had no conflicts of interests in their authorship and publication of this contribution.

References

  1. 1.
    Andriacchi TP, Mündermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32(3):447–457PubMedCrossRefGoogle Scholar
  2. 2.
    Araki D, Kuroda R, Kubo S, Fujita N, Tei K, Nishimoto K, Hoshino Y, Matsushita T, Matsumoto T, Nagamune K, Kurosaka M (2011) A prospective randomized study of anatomic single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 35(3):439–446PubMedCrossRefGoogle Scholar
  3. 3.
    Bach BR Jr, Warren RF, Wickiewicz TL (1988) The pivot shift phenomenon: results and description of a modified clinical test for anterior cruciate ligament insufficiency. Am J Sports Med 16(6):571–576PubMedCrossRefGoogle Scholar
  4. 4.
    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18(9):1269–1276PubMedCrossRefGoogle Scholar
  5. 5.
    Bedi A, Musahl V, Steuber V, Kendoff D, Choi D, Allen AA, Pearle AD, Altchek DW (2011) Transtibial versus anteromedial portal reaming in anterior cruciate ligament reconstruction: an anatomic and biomechanical evaluation of surgical technique. Arthroscopy 27(3):380–390PubMedCrossRefGoogle Scholar
  6. 6.
    Biau DJ, Landreau P, Graveleau N (2010) Monitoring surgical performance: an application of industrial quality process control to anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(9):1263–1268PubMedCrossRefGoogle Scholar
  7. 7.
    Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18:37–42PubMedCrossRefGoogle Scholar
  8. 8.
    Branch TP, Browne JE, Campbell JD, Siebold R, Freedberg HI, Arendt EA, Lavoie F, Neyret P, Jacobs CA (2010) Rotational laxity greater in patients with contralateral anterior cruciate ligament injury than healthy volunteers. Knee Surg Sports Traumatol Arthrosc 18(10):1379–1384PubMedCrossRefGoogle Scholar
  9. 9.
    Bull AM, Andersen HN, Basso O, Targett J, Amis AA (1999) Incidence and mechanism of the pivot shift. An in vitro study. Clin Orthop Relat Res 363:219–231PubMedCrossRefGoogle Scholar
  10. 10.
    Bull AMJ, Earnshaw PH, Smith A, Katchburian MV, Hassan ANA, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84:1075–1081PubMedCrossRefGoogle Scholar
  11. 11.
    Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T (2009) Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg 129:353–358PubMedCrossRefGoogle Scholar
  12. 12.
    Eastlack ME, Axe MJ, Snyder-Mackler L (1999) Laxity, instability, and functional outcome after ACL injury: copers versus noncopers. Med Sci Sports Exerc 31(2):210–215PubMedCrossRefGoogle Scholar
  13. 13.
    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50PubMedGoogle Scholar
  14. 14.
    Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31:75–79PubMedGoogle Scholar
  15. 15.
    Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144PubMedCrossRefGoogle Scholar
  16. 16.
    Hemmerich A, van der Merwe W, Batterham M, Vaughan CL (2011) Knee rotational laxity in a randomized comparison of single- versus double-bundle anterior cruciate ligament reconstruction. Am J Sports Med 39:48–56PubMedCrossRefGoogle Scholar
  17. 17.
    Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35:1098–1104PubMedCrossRefGoogle Scholar
  18. 18.
    Irrgang JJ, Bost JE, Fu FH (2009) Letter to the editor. Am J Sports Med 37:421–423PubMedCrossRefGoogle Scholar
  19. 19.
    Kanamori A, Woo SL, Ma CB, Zeminski J, Rudy TW, Li G, Livesay GA (2000) The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: a human cadaveric study using robotic technology. Arthroscopy 16(6):633–639PubMedCrossRefGoogle Scholar
  20. 20.
    Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, Woo SLY (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test. Arthroscopy 18:394–398PubMedCrossRefGoogle Scholar
  21. 21.
    Kanaya A, Ochi M, Deie M, Adachi N, Nishimori M, Nakamae A (2009) Intraoperative evaluation of anteroposterior and rotational stabilities in anterior cruciate ligament reconstruction: lower femoral tunnel placed single-bundle versus double-bundle reconstruction. Knee Surg Sports Traumatol Arthrosc 17(8):907–913PubMedCrossRefGoogle Scholar
  22. 22.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634PubMedCrossRefGoogle Scholar
  23. 23.
    Labbe DR, de Guise JA, Mezghani N, Godbout V, Grimard G, Baillargeon D, Lavigne P, Fernandes J, Ranger P, Hagemeister N (2011) Objective grading of the pivot shift phenomenon using a support vector machine approach. J Biomech 44(1):1–5PubMedCrossRefGoogle Scholar
  24. 24.
    Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16(5):487–492PubMedCrossRefGoogle Scholar
  25. 25.
    Lee SH, Jung YB, Jung HJ, Song KS, Ko YB (2010) Combined reconstruction for posterolateral rotatory instability with anterior cruciate ligament injuries of the knee. Knee Surg Sports Traumatol Arthrosc 18(9):1219–1225PubMedCrossRefGoogle Scholar
  26. 26.
    Lorbach O, Wilmes P, Theisen D, Brockmeyer M, Maas S, Kohn D, Seil R (2009) Reliability testing of a new device to measure tibial rotation. Knee Surg Sports Traumatol Arthrosc 17(8):920–926PubMedCrossRefGoogle Scholar
  27. 27.
    Losee RE, Johnson TR, Southwick WO (1978) Anterior subluxation of the lateral tibial plateau. A diagnostic test and operative repair. J Bone Joint Surg Am 60(8):1015–1030Google Scholar
  28. 28.
    Maeyama A, Hoshino Y, Debandi A, Kato Y, Saeki K, Asai S, Goto B, Smolinski P, Fu FH (2011) Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees. Knee Surg Sports Traumatol Arthrosc 19(8):1233–1238Google Scholar
  29. 29.
    Magit DP, McGarry M, Tibone JE, Lee TQ (2008) Comparison of cutaneous and transosseous electromagnetic position sensors in the assessment of tibial rotation in a cadaveric model. Am J Sports Med 36(5):971–977PubMedCrossRefGoogle Scholar
  30. 30.
    Markolf KL, Park S, Jackson SR, McAllister DR (2008) Similated pivot-shift testing with single and double-bundle anterior cruciate ligament reconstructions. J Bone Joint Surg Am 90:1681–1689PubMedCrossRefGoogle Scholar
  31. 31.
    Meredick RB, Vance KJ, Appleby D, Lubowitz JH (2008) Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med 36:1414–1421PubMedCrossRefGoogle Scholar
  32. 32.
    Miura K, Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S (2010) Intraoperative comparison of knee laxity between anterior cruciate ligament-reconstructed knee and contralateral stable knee using navigation system. Arthroscopy 26:1203–1211PubMedCrossRefGoogle Scholar
  33. 33.
    Musahl V, Voos J, O’Loughlin PF, Stueber V, Kendoff D, Pearle AD (2010) Mechanized pivot shift test achieves greater accuracy than manual pivot shift test. Knee Surg Sports Traumatol Arthrosc 18:1208–1213PubMedCrossRefGoogle Scholar
  34. 34.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. Am J Sports Med 19:148–155PubMedCrossRefGoogle Scholar
  35. 35.
    Seon JK, Gadikota HR, Kozanek M, Oh LS, Gill TJ, Li G (2009) The effect of anterior cruciate ligament reconstruction on kinematics of the knee with combined anterior cruciate ligament injury and subtotal medial meniscectomy: an in vitro robotic investigation. Arthroscopy 25(2):123–130PubMedCrossRefGoogle Scholar
  36. 36.
    Snyder-Mackler L, Fitzgerald GK, Bartolozzi AR, Ciccotti MG (1997) The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am J Sports Med 25:191–195PubMedCrossRefGoogle Scholar
  37. 37.
    Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotation knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983PubMedCrossRefGoogle Scholar
  38. 38.
    Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ, Fu FH (2008) Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord 9:35PubMedCrossRefGoogle Scholar
  39. 39.
    Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2006) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yuichi Hoshino
    • 1
  • Ryosuke Kuroda
    • 1
    Email author
  • Kouki Nagamune
    • 2
  • Daisuke Araki
    • 1
  • Seiji Kubo
    • 1
  • Motoi Yamaguchi
    • 3
  • Masahiro Kurosaka
    • 1
  1. 1.Department of Orthopaedic SurgeryKobe UniversityKobeJapan
  2. 2.Department of Human and Artificial Intelligent Systems, Graduate School of EngineeringUniversity of FukuiFukuiJapan
  3. 3.Department of Orthopaedic SurgeryMeiwa HospitalNishinomiyaJapan

Personalised recommendations