Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 20, Issue 2, pp 197–209 | Cite as

Cartilage repair in the rabbit knee: mosaic plasty resulted in higher degree of tissue filling but affected subchondral bone more than microfracture technique

A blinded, randomized, controlled, long-term follow-up trial in 88 knees
  • Stig HeirEmail author
  • Asbjørn Årøen
  • Sverre Løken
  • Ingar Holme
  • Lars Engebretsen
  • Finn P. Reinholt
Experimental Study



Discrepancies and variances in outcome following different surgical techniques for cartilage repair are poorly understood. Successful repair relies on proper tissue filling without initiating degenerative processes in the cartilage–bone unit. Consequently, the objective of the current study was to compare two available techniques for cartilage repair, i.e., microfracture technique and mosaic plasty, regarding tissue filling and subchondral bone changes in an experimental model.


A 4-mm pure chondral defect was created in the medial femoral condyle of both knees in New Zealand rabbits, aged 22 weeks. A stereomicroscope was used to optimize the preparation of the defects. In one knee (randomized), the defect was treated with microfracture technique whereas in the other with mosaic plasty. The animals were killed at 12, 24 and 36 weeks after surgery. Defect filling, new bone formation above the level of the tidemark and the density of subchondral mineralized tissue were estimated by histomorphometry.


Mosaic plasty resulted in a significantly 34% higher degree of tissue filling than microfracture technique at 36 weeks, SD of mean difference being 34%. Mosaic plasty resulted in significantly more new bone formation and reduced subchondral mineralized tissue density compared to microfracture technique. The differences between the two techniques were apparent mainly at the long-term follow-up.


Tissue filling is a limiting factor regarding microfracture technique when compared to mosaic plasty, whereas mosaic plasty resulted in more bone changes than microfracture technique—the implications of the latter remain to be settled. This study underlines the difficulty in predicting outcome in the single case with any of these two techniques, particularly in a long-term perspective.

Level of evidence



Cartilage Chondral defect Microfracture Mosaic Filling Subchondral bone Knee Rabbit Surgery 



The authors thank Ansgar Aasen and his staff at the Institute of Surgical Sciences, Dag Sørensen and his staff at the Institute of Comparative Medicine and bioengineer Aileen Murdoch Larsen for technical assistance. The study was supported by grants from Oslo Sports Trauma Research Centre (OSTRC). The center is financed by the South-Eastern Norway Regional Health Authority, the Royal Norwegian Ministry of Education and Research, the Norwegian Olympic Committee & Confederation of Sport and Norsk Tipping.

Conflict of interest

No conflicting interests declared.


  1. 1.
    Aroen A, Heir S, Loken S, Engebretsen L, Reinholt FP (2006) Healing of articular cartilage defects. An experimental study of vascular and minimal vascular microenvironment. J Orthop Res 24(5):1069–1077PubMedCrossRefGoogle Scholar
  2. 2.
    Aroen A, Heir S, Loken S, Reinholt FP, Engebretsen L (2005) Articular cartilage defects in a rabbit model, retention rate of periosteal flap cover. Acta Orthop 76(2):220–224PubMedCrossRefGoogle Scholar
  3. 3.
    Aroen A, Loken S, Heir S, Alvik E, Ekeland A, Granlund OG, Engebretsen L (2004) Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 32(1):211–215PubMedCrossRefGoogle Scholar
  4. 4.
    Årøen A (2005) Cartilage injuries and the repair process. Thesis. Faculty of Medicine, University of Oslo. Unipub/AIT AS Oslo, NorwayGoogle Scholar
  5. 5.
    Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, Bentley G (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87(5):640–645PubMedCrossRefGoogle Scholar
  6. 6.
    Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85(2):223–230PubMedCrossRefGoogle Scholar
  7. 7.
    Breinan HA, Martin SD, Hsu HP, Spector M (2000) Healing of canine articular cartilage defects treated with microfracture, a type-II collagen matrix, or cultured autologous chondrocytes. J Orthop Res 18(5):781–789PubMedCrossRefGoogle Scholar
  8. 8.
    Breinan HA, Minas T, Hsu HP, Nehrer S, Sledge CB, Spector M (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. J Bone Joint Surg Am 79(10):1439–1451PubMedGoogle Scholar
  9. 9.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895PubMedCrossRefGoogle Scholar
  10. 10.
    Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L (1996) Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res (326):270–283Google Scholar
  11. 11.
    Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69PubMedGoogle Scholar
  12. 12.
    Buckwalter JA (1998) Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 28(4):192–202PubMedGoogle Scholar
  13. 13.
    Buckwalter JA (1999) Evaluating methods of restoring cartilaginous articular surfaces. Clin Orthop Relat Res (367 Suppl):S224–S238Google Scholar
  14. 14.
    Burr DB (2004) Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage 12(Suppl A):S20–S30PubMedCrossRefGoogle Scholar
  15. 15.
    Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD (2009) Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 27(11):1432–1438PubMedCrossRefGoogle Scholar
  16. 16.
    Dorotka R, Bindreiter U, Macfelda K, Windberger U, Nehrer S (2005) Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage 13(8):655–664PubMedCrossRefGoogle Scholar
  17. 17.
    Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, McIlwraith CW (2006) Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med 34(11):1824–1831PubMedCrossRefGoogle Scholar
  18. 18.
    Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, Goodnight JL, McIlwraith CW (2003) Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res (407):215–227Google Scholar
  19. 19.
    Frisbie DD, Trotter GW, Powers BE, Rodkey WG, Steadman JR, Howard RD, Park RD, McIlwraith CW (1999) Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg 28(4):242–255PubMedCrossRefGoogle Scholar
  20. 20.
    Gill TJ, McCulloch PC, Glasson SS, Blanchet T, Morris EA (2005) Chondral defect repair after the microfracture procedure: a nonhuman primate model. Am J Sports Med 33(5):680–685PubMedCrossRefGoogle Scholar
  21. 21.
    Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13(3):203–210PubMedCrossRefGoogle Scholar
  22. 22.
    Grande DA, Pitman MI, Peterson L, Menche D, Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7(2):208–218PubMedCrossRefGoogle Scholar
  23. 23.
    Gudas R, Simonaityte R, Cekanauskas E, Tamosiunas R (2009) A prospective, randomized clinical study of osteochondral autologous transplantation versus microfracture for the treatment of osteochondritis dissecans in the knee joint in children. J Pediatr Orthop 29(7):741–748PubMedCrossRefGoogle Scholar
  24. 24.
    Gudas R, Stankevicius E, Monastyreckiene E, Pranys D, Kalesinskas RJ (2006) Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 14(9):834–842PubMedCrossRefGoogle Scholar
  25. 25.
    Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96(10):857–881PubMedCrossRefGoogle Scholar
  26. 26.
    Hangody L (1997) Autogenous osteochondral graft technique for replacing knee cartilage defects in dogs. Orthop Int Ed 5(3):175–181Google Scholar
  27. 27.
    Hangody L, Kish G, Karpati Z, Udvarhelyi I, Szigeti I, Bely M (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21(7):751–756PubMedGoogle Scholar
  28. 28.
    Heir S, Aroen A, Loken S, Sulheim S, Engebretsen L, Reinholt FP (2010) Intraarticular location predicts cartilage filling and subchondral bone changes in a chondral defect. Acta Orthop 81(5):619–627PubMedCrossRefGoogle Scholar
  29. 29.
    Heir S, Nerhus TK, Rotterud JH, Loken S, Ekeland A, Engebretsen L, Aroen A (2010) Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 38(2):231–237PubMedCrossRefGoogle Scholar
  30. 30.
    Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18(7):730–734PubMedCrossRefGoogle Scholar
  31. 31.
    Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 87(12):2671–2686PubMedCrossRefGoogle Scholar
  32. 32.
    Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 85-A(2):185–192PubMedGoogle Scholar
  33. 33.
    Huang FS, Simonian PT, Norman AG, Clark JM (2004) Effects of small incongruities in a sheep model of osteochondral autografting. Am J Sports Med 32(8):1842–1848PubMedCrossRefGoogle Scholar
  34. 34.
    Hunziker EB (1999) Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis Cartilage 7(1):15–28PubMedCrossRefGoogle Scholar
  35. 35.
    Hurtig M, Pearce S, Warren S, Kalra M, Miniaci A (2001) Arthroscopic mosaic arthroplasty in the equine third carpal bone. Vet Surg 30(3):228–239PubMedCrossRefGoogle Scholar
  36. 36.
    Hurtig MB (1988) Experimental use of small osteochondral grafts for resurfacing the equine third carpal bone. Equine Vet J (6 Suppl):23–27Google Scholar
  37. 37.
    Jakobsen RB, Engebretsen L, Slauterbeck JR (2005) An analysis of the quality of cartilage repair studies. J Bone Joint Surg Am 87(10):2232–2239PubMedCrossRefGoogle Scholar
  38. 38.
    Knutsen G, Drogset JO, Engebretsen L, Grontvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89(10):2105–2112PubMedCrossRefGoogle Scholar
  39. 39.
    Knutsen G, Engebretsen L, Ludvigsen TC, Drogset JO, Grontvedt T, Solheim E, Strand T, Roberts S, Isaksen V, Johansen O (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86-A(3):455–464PubMedGoogle Scholar
  40. 40.
    Krishnan SP, Skinner JA, Bartlett W, Carrington RW, Flanagan AM, Briggs TW, Bentley G (2006) Who is the ideal candidate for autologous chondrocyte implantation? J Bone Joint Surg Br 88(1):61–64PubMedCrossRefGoogle Scholar
  41. 41.
    Kuo AC, Rodrigo JJ, Reddi AH, Curtiss S, Grotkopp E, Chiu M (2006) Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthritis Cartilage 14(11):1126–1135PubMedCrossRefGoogle Scholar
  42. 42.
    Lane JG, Massie JB, Ball ST, Amiel ME, Chen AC, Bae WC, Sah RL, Amiel D (2004) Follow-up of osteochondral plug transfers in a goat model: a 6-month study. Am J Sports Med 32(6):1440–1450PubMedCrossRefGoogle Scholar
  43. 43.
    Lane JG, Tontz WL Jr, Ball ST, Massie JB, Chen AC, Bae WC (2001) A morphologic, biochemical, and biomechanical assessment of short-term effects of osteochondral autograft plug transfer in an animal model. Arthroscopy 17(8):856–863PubMedGoogle Scholar
  44. 44.
    Lietman SA, Miyamoto S, Brown PR, Inoue N, Reddi AH (2002) The temporal sequence of spontaneous repair of osteochondral defects in the knees of rabbits is dependent on the geometry of the defect. J Bone Joint Surg Br 84(4):600–606PubMedCrossRefGoogle Scholar
  45. 45.
    Lohmander LS, Dahlberg L, Ryd L, Heinegard D (1989) Increased levels of proteoglycan fragments in knee joint fluid after injury. Arthritis Rheum 32(11):1434–1442PubMedCrossRefGoogle Scholar
  46. 46.
    Loken S, Jakobsen RB, Aroen A, Heir S, Shahdadfar A, Brinchmann JE, Engebretsen L, Reinholt FP (2008) Bone marrow mesenchymal stem cells in a hyaluronan scaffold for treatment of an osteochondral defect in a rabbit model. Knee Surg Sports Traumatol Arthrosc 16(10):896–903PubMedCrossRefGoogle Scholar
  47. 47.
    Loken S, Ludvigsen TC, Hoysveen T, Holm I, Engebretsen L, Reinholt FP (2009) Autologous chondrocyte implantation to repair knee cartilage injury: ultrastructural evaluation at 2 years and long-term follow-up including muscle strength measurements. Knee Surg Sports Traumatol Arthrosc 17(11):1278–1288PubMedCrossRefGoogle Scholar
  48. 48.
    Lorentzon R, Alfredson H, Hildingsson C (1998) Treatment of deep cartilage defects of the patella with periosteal transplantation. Knee Surg Sports Traumatol Arthrosc 6(4):202–208PubMedCrossRefGoogle Scholar
  49. 49.
    Magnussen RA, Dunn WR, Carey JL, Spindler KP (2008) Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res 466:952–962PubMedCrossRefGoogle Scholar
  50. 50.
    Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E (2003) Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am 85-A(Suppl 2):45–57PubMedGoogle Scholar
  51. 51.
    Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53(3):523–537PubMedGoogle Scholar
  52. 52.
    Messner K, Gillquist J (1996) Cartilage repair. A critical review. Acta Orthop Scand 67(5):523–529PubMedCrossRefGoogle Scholar
  53. 53.
    Messner K, Gillquist J, Bjornsson S, Lohmander LS (1993) Proteoglycan fragments in rabbit joint fluid correlated to arthrosis stage. Acta Orthop Scand 64(3):312–316PubMedCrossRefGoogle Scholar
  54. 54.
    Messner K, Lohmander LS, Gillquist J (1993) Neocartilage after artificial cartilage repair in the rabbit: histology and proteoglycan fragments in joint fluid. J Biomed Mater Res 27(7):949–954PubMedCrossRefGoogle Scholar
  55. 55.
    Nam EK, Makhsous M, Koh J, Bowen M, Nuber G, Zhang LQ (2004) Biomechanical and histological evaluation of osteochondral transplantation in a rabbit model. Am J Sports Med 32(2):308–316PubMedCrossRefGoogle Scholar
  56. 56.
    O’Driscoll SW, Keeley FW, Salter RB (1986) The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am 68(7):1017–1035PubMedGoogle Scholar
  57. 57.
    Odenbring S, Egund N, Lindstrand A, Lohmander LS (1991) Proteoglycan epitope in synovial fluid in gonarthrosis. 28 cases of tibial osteotomy studied prospectively for 2 years. Acta Orthop Scand 62(2):169–173PubMedCrossRefGoogle Scholar
  58. 58.
    Pearce SG, Hurtig MB, Clarnette R, Kalra M, Cowan B, Miniaci A (2001) An investigation of 2 techniques for optimizing joint surface congruency using multiple cylindrical osteochondral autografts. Arthroscopy 17(1):50–55PubMedCrossRefGoogle Scholar
  59. 59.
    Pineda S, Pollack A, Stevenson S, Goldberg V, Caplan A (1992) A semiquantitative scale for histologic grading of articular cartilage repair. Acta Anat (Basel) 143(4):335–340CrossRefGoogle Scholar
  60. 60.
    Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14(1):13–29PubMedCrossRefGoogle Scholar
  61. 61.
    Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res (213):34–40Google Scholar
  62. 62.
    Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F, Lagae K, van der BJ, Vandenneucker H, Yang KG, Jelic M, Verdonk R, Veulemans N, Bellemans J, Luyten FP (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246PubMedCrossRefGoogle Scholar
  63. 63.
    Siebert CH, Miltner O, Weber M, Sopka S, Koch S, Niedhart C (2003) Healing of osteochondral grafts in an ovine model under the influence of bFGF. Arthroscopy 19(2):182–187PubMedCrossRefGoogle Scholar
  64. 64.
    Solheim E, Hegna J, Oyen J, Austgulen OK, Harlem T, Strand T (2010) Osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee: results at 5 to 9 years. Knee 17(1):84–87PubMedCrossRefGoogle Scholar
  65. 65.
    Solheim E, Oyen J, Hegna J, Austgulen OK, Harlem T, Strand T (2010) Microfracture treatment of single or multiple articular cartilage defects of the knee: a 5-year median follow-up of 110 patients. Knee Surg Sports Traumatol Arthrosc 18(4):504–508PubMedCrossRefGoogle Scholar
  66. 66.
    Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res (391 Suppl):S362–S369Google Scholar
  67. 67.
    Visna P, Pasa L, Cizmar I, Hart R, Hoch J (2004) Treatment of deep cartilage defects of the knee using autologous chondrograft transplantation and by abrasive techniques—a randomized controlled study. Acta Chir Belg 104(6):709–714PubMedGoogle Scholar
  68. 68.
    vonRechenberg RB, Akens MK, Nadler D, Bittmann P, Zlinszky K, Kutter A (2003) Changes in subchondral bone in cartilage resurfacing—an experimental study in sheep using different types of osteochondral grafts. Osteoarthritis Cartilage 11(4):265–277CrossRefGoogle Scholar
  69. 69.
    Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76(4):579–592PubMedGoogle Scholar
  70. 70.
    Zeifang F, Oberle D, Nierhoff C, Richter W, Moradi B, Schmitt H (2010) Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial. Am J Sports Med 38(5):924–933PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stig Heir
    • 1
    • 2
    • 3
    Email author
  • Asbjørn Årøen
    • 2
    • 3
    • 4
  • Sverre Løken
    • 3
    • 4
  • Ingar Holme
    • 3
  • Lars Engebretsen
    • 3
    • 4
  • Finn P. Reinholt
    • 5
  1. 1.Martina Hansens HospitalBærumNorway
  2. 2.Institute for Surgical ResearchOslo University Hospital RikshospitaletOsloNorway
  3. 3.Oslo Sports Trauma Research CenterNorwegian School of Sport SciencesOsloNorway
  4. 4.Orthopaedic CentreOslo University Hospital UllevålOsloNorway
  5. 5.Institute of PathologyOslo University Hospital RikshospitaletOsloNorway

Personalised recommendations