Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 19, Issue 8, pp 1233–1238 | Cite as

Evaluation of rotational instability in the anterior cruciate ligament deficient knee using triaxial accelerometer: a biomechanical model in porcine knees

  • Akira Maeyama
  • Yuichi Hoshino
  • Anibal Debandi
  • Yuki Kato
  • Kazuhiko Saeki
  • Shigehiro Asai
  • Bunsei Goto
  • Patrick Smolinski
  • Freddie H. FuEmail author



To measure the acceleration in multiple directions of the rotational instability in ACL deficient models using porcine knees.


Ten porcine knees were tested with ACL intact and tear models. The pivot shift test was performed manually, and the acceleration of the pivot shift phenomenon was recorded by the use of a triaxial accelerometer. Tests were repeated in four different ACL states: (1) intact; (2) partial AM deficient; (3) complete AM deficient, and (4) complete ACL (AM and PL) deficient. The acceleration in three directions and the magnitude of acceleration were measured to evaluate rotational instability and compare between different ACL conditions.


Significantly increased accelerations were observed in the complete deficient ACL model, while the partial ACL tear models demonstrated a slight increase without statistical significance. The accelerometer detected stepwise increases in the acceleration with the extent of ACL tear. Additionally, the PL bundle exhibited the largest contribution for rotational instability (80.4%) when compared with the AM (19.5%) bundles.


Triaxial accelerometer could serve as a quantitative evaluation of rotational instability. The present study demonstrated that PL bundle has the most important contribution for rotational instability (80.4%) when compared to IM bundle (0.01%) and AM bundle (19.5%) in porcine knee model.


Rotational instability Triaxial accelerometer ACL Porcine model 


Conflict of interest

No conflict of interest is declared.


  1. 1.
    Aglietti P, Giron F, Losco M, Cuomo P, Ciardullo A, Mondanelli N (2010) Comparison between single- and double-bundle anterior cruciate ligament reconstruction. A prospective, randomized, single-blinded clinical trial. Am J Sports Med 38:25–34PubMedCrossRefGoogle Scholar
  2. 2.
    Amis AA, Dawkins GPC (1991) Functional anatomy of the anterior cruciate ligament. J Bone Joint Surg Br 73-B:260–267Google Scholar
  3. 3.
    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc (Published Online). doi:  10.1007/s00167-010-1160-y
  4. 4.
    Bignozzi S, Zaffagnini S, Lopomo N, Fu FH, Irrgang JJ, Marcacci M (2010) Clinical relevance of static and dynamic tests after anatomical double-bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 18:37–42PubMedCrossRefGoogle Scholar
  5. 5.
    Bull AMJ, Amis AA (1998) The pivot-shift phenomenon: a clinical and biomechanical perspective. Knee 5:141–158CrossRefGoogle Scholar
  6. 6.
    Bull AMJ, Andersen HN, Basso O, Targett J, Amis AA (1999) Incidence and mechanism of the pivot shift. An in vitro study. Clin Orthop Relat Res 363:219–231PubMedCrossRefGoogle Scholar
  7. 7.
    Bull AMJ, Earnshaw PH, Smith A, Katchburian V, Hassan ANA, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84-B:1075–1081CrossRefGoogle Scholar
  8. 8.
    Cohen SB, Fu FH (2007) Three-portal technique for anterior cruciate ligament reconstruction: use of a central medial portal. Arthroscopy 23:325.e1–325.e4CrossRefGoogle Scholar
  9. 9.
    Dargel J, Koebke J, Bruggemann GP, Pennig D, Schmidt-Wiehoff R (2009) Tension degradation of anterior cruciate ligament grafts with dynamic flexion-extension loading: a biomechanical model in porcine knees. Arthroscopy 25:1115–1125PubMedCrossRefGoogle Scholar
  10. 10.
    Fetto JF, Marshall JL (1979) Injury to the anterior cruciate ligament producing the pivot-shift sign. J Bone Joint Surg Am 61:710–714PubMedGoogle Scholar
  11. 11.
    Fu FH, Shen W, Starman JS, Okeke N, Irrgang JJ (2008) Primary anatomic double-bundle anterior cruciate ligament reconstruction: a preliminary 2-years prospective study. Am J Sports Med 36:1263–1274PubMedCrossRefGoogle Scholar
  12. 12.
    Gabriel MT, Wong EK, Woo SL, Yagi M, Debski RE (2006) Distribution of in situ forces in the anterior cruciate ligament in response to rotator loads. J Orthop Res 22:85–89CrossRefGoogle Scholar
  13. 13.
    Galway HR, MacIntosh DL (1980) The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency. Clin Orthop Relat Res 147:45–50PubMedGoogle Scholar
  14. 14.
    Hoshino Y, Kuroda R, Nagamune K, Yagi M, Mizuno K, Yamaguchi M, Muratsu H, Yoshiya S, Kurosaka M (2007) In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 35:1098–1104PubMedCrossRefGoogle Scholar
  15. 15.
    Hughston JC, Andrews JR, Cross MJ, Moschi A (1976) Classification of knee ligament instabilities. Part I. The medial compartment and cruciate ligaments. J Bone Joint Surg Am 58:159–172PubMedGoogle Scholar
  16. 16.
    Ishibashi Y, Rudy TW, Livesay GA, Stone JD, Fu FH, Woo SLY (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 13:177–182PubMedCrossRefGoogle Scholar
  17. 17.
    Iriuchishima T, Tajima G, Ingham SJ, Shen W, Horaguchi T, Saito A, Smolinski P, Fu FH (2009) Intercondylar roof impingement pressure after anterior cruciate ligament reconstruction in a porcine model. Knee Surg Sports Traumatol Arthrosc 17:590–594PubMedCrossRefGoogle Scholar
  18. 18.
    Kato Y, Ingham SJM, Kramer S, Smolinski P, Saito A, Fu FH (2010) Effect of tunnel position for anatomic single-bundle ACL reconstruction on knee biomechanics in a porcine model. Knee Surg Sports Traumatol Arthrosc 18:2–10PubMedCrossRefGoogle Scholar
  19. 19.
    Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ (2004) Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 32:629–634PubMedCrossRefGoogle Scholar
  20. 20.
    Kondo E, Yasuda K, Azuma H, Tanabe Y, Yagi T (2008) Prospective clinical comparisons of anatomic double-bundle versus single-bundle anterior cruciate ligament reconstruction procedures in 328 consecutive patients. Am J Sports Med 36:1675–1688PubMedCrossRefGoogle Scholar
  21. 21.
    Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16:487–492PubMedCrossRefGoogle Scholar
  22. 22.
    Leitze Z, Losee RE, Jokl P, Johnson TR, Feagin JA (2005) Implications of the pivot shift in the ACL-deficient knee. Clin Orthop Relat Res 436:229–236PubMedCrossRefGoogle Scholar
  23. 23.
    Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M (2010) Pivot-shift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 28:164–169PubMedGoogle Scholar
  24. 24.
    Losee RE (1983) Concepts of the pivot-shift. Clin Orthop Relat Res 72:45–51Google Scholar
  25. 25.
    Maeyama A, Naito M, Moriyama S, Yoshimura I (2008) Evaluation of dynamic instability of the dysplastic hip with use of triaxial accelerometry. J Bone Joint Surg Am 90:85–92PubMedCrossRefGoogle Scholar
  26. 26.
    Maeyama A, Naito M, Moriyama S, Yoshimura I (2009) Periacetabular osteotomy reduces the dynamic instability of dysplastic hips. J Bone Joint Surg Br 91-B:1438–1442CrossRefGoogle Scholar
  27. 27.
    Matsumoto H (1990) Mechanism of the pivot shift. J Bone Joint Surg Br 72-B:816–821Google Scholar
  28. 28.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot-shift phenomenon: the knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155PubMedCrossRefGoogle Scholar
  29. 29.
    Slocum DB, James SL, Larson RL, Singer KM (1976) Clinical test for anterolateral rotary instability of the knee. Clin Orthop Relat Res 118:63–69PubMedGoogle Scholar
  30. 30.
    Sommerlath K, Lysholm J, Gillquist J (1991) The long-term course after treatment of acute anterior cruciate ligament ruptures. A 9–16 years followup. Am J Sports Med 19:156–162PubMedCrossRefGoogle Scholar
  31. 31.
    Tashiro Y, Okazaki K, Miura H, Matsuda S, Yasunaga T, Hashizume M, Nakanishi Y, Iwamoto Y (2009) Quantitative assessment of rotatory instability after anterior cruciate ligament reconstruction. Am J Sports Med 37:909–916PubMedCrossRefGoogle Scholar
  32. 32.
    Yagi M, Wong EK, Kanamori A, Debski RE, Fu FH, Woo SL (2002) Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med 30:660–666PubMedGoogle Scholar
  33. 33.
    Zamarra G, Fisher MB, Woo SL, Cerulli G (2010) Biomechanical evaluation of using one hamstrings tendon for ACL reconstruction: a human cadaveric study. Knee Surg Sports Traumatol Arthorosc 18:11–19CrossRefGoogle Scholar
  34. 34.
    Zantop T, Schumacher T, Diermann N, Schanz S, Raschke MJ, Petersen W (2006) Anterolateral rotational knee instability: role of posterolateral structures. Winner of the AGA-DonJoy Award 2006. Orthop Trauma Surg 127:743–752CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Akira Maeyama
    • 1
  • Yuichi Hoshino
    • 2
  • Anibal Debandi
    • 2
  • Yuki Kato
    • 2
  • Kazuhiko Saeki
    • 1
  • Shigehiro Asai
    • 2
  • Bunsei Goto
    • 2
  • Patrick Smolinski
    • 3
  • Freddie H. Fu
    • 2
    • 3
    Email author
  1. 1.Department of Orthopaedic Surgery, School of MedicineFukuoka UniversityFukuokaJapan
  2. 2.Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical CenterPittsburghUSA
  3. 3.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations