Advertisement

The influence of graft choice on isokinetic muscle strength 4–24 months after anterior cruciate ligament reconstruction

  • Sofia A. Xergia
  • Jodie A. McClelland
  • Joanna Kvist
  • Haris S. Vasiliadis
  • Anastasios D. GeorgoulisEmail author
Knee

Abstract

Purpose

Regaining adequate strength of the quadriceps and hamstrings after anterior cruciate ligament (ACL) reconstruction is important for maximizing functional performance. However, the outcome of muscle strength after either BPTB or hamstrings autograft is unclear given the plethora of published studies that report post-operative muscle strength. The purpose of this study was to systematically compare the muscle strength of patients who have undergone ACL reconstruction using either Bone Patellar Tendon Bone (BPTB) or Hamstrings (HST) autograft.

Methods

The databases of MEDLINE, Cinahal and EMBASE were systematically searched for articles that report muscle strength outcome following ACL reconstruction. The quality of the studies was evaluated and a meta-analysis of the muscle strength outcomes was conducted on reported data.

Results

Fourteen studies were included in this systematic review: eight Randomized Control Studies (RCT) and six non-Randomized Control Studies (non-RCT). A meta-analysis was performed involving eight of the included studies (4 RCTs & 3 non-RCTs). At 60°/s and 180°/s, patients with BPTB graft showed a greater deficit in extensor muscle strength and lower deficit in flexor muscle strength compared with patients with HST.

Conclusion

This systematic review of Level III evidence showed that isokinetic muscle strength deficits following ACL reconstruction are associated with the location of the donor site. These deficits appear to be unresolved up to 2 years after ACL reconstruction.

Level of evidence

III.

Keywords

ACL reconstruction Isokinetic muscle strength Systematic review Meta-analysis 

Notes

Acknowledgments

The authors acknowledge the support from the Greek General Secretariat for Research and Technology and the European Union (Operative Program Competitiveness; AKMON) to the Orthopaedic Sports Medicine Center, and the Hellenic Association of Orthopaedic Surgery & Traumatology.

References

  1. 1.
    Ageberg E, Forssblad M, Herbertsson P, Roos EM (2010) Sex differences in patient-reported outcomes after anterior cruciate ligament reconstruction: data from the Swedish knee ligament register. Am J Sports Med 38:1334–1342PubMedCrossRefGoogle Scholar
  2. 2.
    Ageberg E, Roos HP, Silbernagel KG, Thomee R, Roos EM (2009) Knee extension and flexion muscle power after anterior cruciate ligament reconstruction with patellar tendon graft or hamstring tendons graft: a cross-sectional comparison 3 years post surgery. Knee Surg Sports Traumatol Arthrosc 17:162–169PubMedCrossRefGoogle Scholar
  3. 3.
    Aglietti P, Buzzi R, Giron F, Simeone AJ, Zaccherotti G (1997) Arthroscopic-assisted anterior cruciate ligament reconstruction with the central third patellar tendon. A 5–8-year follow-up. Knee Surg Sports Traumatol Arthrosc 5:138–144PubMedCrossRefGoogle Scholar
  4. 4.
    Aglietti P, Buzzi R, Zaccherotti G, De BP (1994) Patellar tendon versus doubled semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction. Am J Sports Med 22:211–217PubMedCrossRefGoogle Scholar
  5. 5.
    Aglietti P, Giron F, Buzzi R, Biddau F, Sasso F (2004) Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am 86-A:2143–2155PubMedGoogle Scholar
  6. 6.
    Anderson AF, Snyder RB, Lipscomb AB Jr (2001) Anterior cruciate ligament reconstruction. A prospective randomized study of three surgical methods. Am J Sports Med 29:272–279PubMedGoogle Scholar
  7. 7.
    Anderson JL, Lamb SE, Barker KL, Davies S, Dodd CA, Beard DJ (2002) Changes in muscle torque following anterior cruciate ligament reconstruction: a comparison between hamstrings and patella tendon graft procedures on 45 patients. Acta Orthop Scand 73:546–552PubMedCrossRefGoogle Scholar
  8. 8.
    Andersson D, Samuelsson K, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to surgical technique and rehabilitation: an assessment of randomized controlled trials. Arthroscopy 25:653–685PubMedCrossRefGoogle Scholar
  9. 9.
    Augustsson J, Thomeé R, Karlsson J (2004) Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:350–356PubMedCrossRefGoogle Scholar
  10. 10.
    Aune AK, Holm I, Risberg MA, Jensen HK, Steen H (2001) Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction. A randomized study with 2-year follow-up. Am J Sports Med 29:722–728PubMedGoogle Scholar
  11. 11.
    Beard DJ, Anderson JL, Davies S, Price AJ, Dodd CA (2001) Hamstrings vs. patella tendon for anterior cruciate ligament reconstruction: a randomised controlled trial. Knee 8:45–50PubMedCrossRefGoogle Scholar
  12. 12.
    Beynnon BD, Johnson RJ, Fleming BC, Kannus P, Kaplan M, Samani J, Renstrom P (2002) Anterior cruciate ligament replacement: comparison of bone-patellar tendon-bone grafts with two-strand hamstring grafts. A prospective, randomized study. J Bone Joint Surg Am 84-A:1503–1513PubMedGoogle Scholar
  13. 13.
    Bizzini M, Gorelick M, Munzinger U, Drobny T (2006) Joint laxity and isokinetic thigh muscle strength characteristics after anterior cruciate ligament reconstruction: bone patellar tendon bone versus quadrupled hamstring autografts. Clin J Sport Med 16:4–9PubMedCrossRefGoogle Scholar
  14. 14.
    Bollen SR, Scott BW (1996) Rupture of the anterior cruciate ligament—a quiet epidemic? Injury 27:407–409PubMedCrossRefGoogle Scholar
  15. 15.
    Brand J Jr, Weiler A, Caborn DN, Brown CH Jr, Johnson DL (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–774PubMedGoogle Scholar
  16. 16.
    Carter TR, Edinger S (1999) Isokinetic evaluation of anterior cruciate ligament reconstruction: hamstring versus patellar tendon. Arthroscopy 15:169–172PubMedCrossRefGoogle Scholar
  17. 17.
    Childs SG (2002) Pathogenesis of anterior cruciate ligament injury. Orthop Nurs 21:35–40PubMedCrossRefGoogle Scholar
  18. 18.
    Courtney C, Rine RM, Kroll P (2005) Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture 22:69–74PubMedCrossRefGoogle Scholar
  19. 19.
    Dauty M, Tortellier L, Rochcongar P (2005) Isokinetic and anterior cruciate ligament reconstruction with hamstrings or patella tendon graft: analysis of literature. Int J Sports Med 26:599–606PubMedCrossRefGoogle Scholar
  20. 20.
    de Morton NA (2009) The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 55:129–133PubMedGoogle Scholar
  21. 21.
    Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52:377–384PubMedCrossRefGoogle Scholar
  22. 22.
    Eitzen I, Holm I, Risberg MA (2009) Preoperative quadriceps strength is a significant predictor of knee function 2 years after anterior cruciate ligament reconstruction. Br J Sports Med 43:371–376PubMedCrossRefGoogle Scholar
  23. 23.
    Ejerhed L, Kartus J, Sernert N, Kohler K, Karlsson J (2003) Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction? A prospective randomized study with a 2-year follow-up. Am J Sports Med 31:19–25PubMedGoogle Scholar
  24. 24.
    Eriksson K, Anderberg P, Hamberg P, Olerud P, Wredmark T (2001) There are differences in early morbidity after ACL reconstruction when comparing patellar tendon and semitendinosus tendon graft. A prospective randomized study of 107 patients. Scand J Med Sci Sports 11:170–177PubMedCrossRefGoogle Scholar
  25. 25.
    Eriksson K, Kindblom LG, Hamberg P, Larsson H, Wredmark T (2001) The semitendinosus tendon regenerates after resection: a morphologic and MRI analysis in 6 patients after resection for anterior cruciate ligament reconstruction. Acta Orthop Scand 72:379–384PubMedCrossRefGoogle Scholar
  26. 26.
    Feller JA, Webster KE (2003) A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 31:564–573PubMedGoogle Scholar
  27. 27.
    Feller JA, Webster KE, Gavin B (2001) Early post-operative morbidity following anterior cruciate ligament reconstruction: patellar tendon versus hamstring graft. Knee Surg Sports Traumatol Arthrosc 9:260–266PubMedCrossRefGoogle Scholar
  28. 28.
    Ferretti A, Conteduca F, Morelli F, Masi V (2002) Regeneration of the semitendinosus tendon after its use in anterior cruciate ligament reconstruction: a histologic study of three cases. Am J Sports Med 30:204–207PubMedGoogle Scholar
  29. 29.
    Finsterbush A, Frankl U, Matan Y, Mann G (1990) Secondary damage to the knee after isolated injury of the anterior cruciate ligament. Am J Sports Med 18:475–479PubMedCrossRefGoogle Scholar
  30. 30.
    Fischer-Rasmussen T, Jensen PE (2000) Proprioceptive sensitivity and performance in anterior cruciate ligament-deficient knee joints. Scand J Med Sci Sports 10:85–89PubMedCrossRefGoogle Scholar
  31. 31.
    Gobbi A, Mahajan S, Zanazzo M, Tuy B (2003) Patellar tendon versus quadrupled bone-semitendinosus anterior cruciate ligament reconstruction: a prospective clinical investigation in athletes. Arthroscopy 19:592–601PubMedCrossRefGoogle Scholar
  32. 32.
    Herzog W, Longino D, Clark A (2003) The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg 388:305–315PubMedCrossRefGoogle Scholar
  33. 33.
    Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2000) Knee strength deficits after hamstring tendon and patellar tendon anterior cruciate ligament reconstruction. Med Sci Sports Exerc 32:1472–1479PubMedCrossRefGoogle Scholar
  34. 34.
    Hioki S, Fukubayashi T, Ikeda K, Niitsu M, Ochiai N (2003) Effect of harvesting the hamstrings tendon for anterior cruciate ligament reconstruction on the morphology and movement of the hamstrings muscle: a novel MRI technique. Knee Surg Sports Traumatol Arthrosc 11:223–227PubMedCrossRefGoogle Scholar
  35. 35.
    Jansson KA, Linko E, Sandelin J, Harilainen A (2003) A prospective randomized study of patellar versus hamstring tendon autografts for anterior cruciate ligament reconstruction. Am J Sports Med 31:12–18PubMedGoogle Scholar
  36. 36.
    Johansson H, Sjolander P, Sojka P (1991) Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Crit Rev Biomed Eng 18:341–368PubMedGoogle Scholar
  37. 37.
    Kartus J, Movin T, Karlsson J (2001) Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy 17:971–980PubMedCrossRefGoogle Scholar
  38. 38.
    Konishi Y, Fukubayashi T, Takeshita D (2002) Mechanism of quadriceps femoris muscle weakness in patients with anterior cruciate ligament reconstruction. Scand J Med Sci Sports 12:371–375PubMedCrossRefGoogle Scholar
  39. 39.
    Kvist J (2004) Rehabilitation following anterior cruciate ligament injury: current recommendations for sports participation. Sports Med 34:269–280PubMedCrossRefGoogle Scholar
  40. 40.
    Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala UM (2008) Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 16:1009–1016PubMedCrossRefGoogle Scholar
  41. 41.
    Lyman S, Koulouvaris P, Sherman S, Do H, Mandl LA, Marx RG (2009) Epidemiology of anterior cruciate ligament reconstruction: trends, readmissions, and subsequent knee surgery. J Bone Joint Surg Am 91:2321–2328PubMedCrossRefGoogle Scholar
  42. 42.
    Maletis GB, Cameron SL, Tengan JJ, Burchette RJ (2007) A prospective randomized study of anterior cruciate ligament reconstruction: a comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med 35:384–394PubMedCrossRefGoogle Scholar
  43. 43.
    Marumoto JM, Mitsunaga MM, Richardson AB, Medoff RJ, Mayfield GW (1996) Late patellar tendon ruptures after removal of the central third for anterior cruciate ligament reconstruction. A report of two cases. Am J Sports Med 24:698–701PubMedCrossRefGoogle Scholar
  44. 44.
    Mastrokalos DS, Springer J, Siebold R, Paessler HH (2005) Donor site morbidity and return to the preinjury activity level after anterior cruciate ligament reconstruction using ipsilateral and contralateral patellar tendon autograft: a retrospective, nonrandomized study. Am J Sports Med 33:85–93PubMedCrossRefGoogle Scholar
  45. 45.
    Matsumoto A, Yoshiya S, Muratsu H, Yagi M, Iwasaki Y, Kurosaka M, Kuroda R (2006) A comparison of bone-patellar tendon-bone and bone-hamstring tendon-bone autografts for anterior cruciate ligament reconstruction. Am J Sports Med 34:213–219PubMedCrossRefGoogle Scholar
  46. 46.
    McDaniel WJ Jr, Dameron TB Jr (1983) The untreated anterior cruciate ligament rupture. Clin Orthop Relat Res 172:158–163PubMedGoogle Scholar
  47. 47.
    Meunier A, Odensten M, Good L (2007) Long-term results after primary repair or non-surgical treatment of anterior cruciate ligament rupture: a randomized study with a 15-year follow-up. Scand J Med Sci Sports 17:230–237PubMedGoogle Scholar
  48. 48.
    Myer GD, Paterno MV, Ford KR, Quatman CE, Hewett TE (2006) Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther 36:385–402PubMedGoogle Scholar
  49. 49.
    Natri A, Jarvinen M, Latvala K, Kannus P (1996) Isokinetic muscle performance after anterior cruciate ligament surgery. Long-term results and outcome predicting factors after primary surgery and late-phase reconstruction. Int J Sports Med 17:223–228PubMedCrossRefGoogle Scholar
  50. 50.
    Nelson F, Billinghurst RC, Pidoux I, Reiner A, Langworthy M, McDermott M, Malogne T, Sitler DF, Kilambi NR, Lenczner E, Poole AR (2006) Early post-traumatic osteoarthritis-like changes in human articular cartilage following rupture of the anterior cruciate ligament. Osteoarthritis Cartilage 14:114–119PubMedCrossRefGoogle Scholar
  51. 51.
    Noyes FR, Matthews DS, Mooar PA, Grood ES (1983) The symptomatic anterior cruciate-deficient knee. Part II: the results of rehabilitation, activity modification, and counseling on functional disability. J Bone Joint Surg Am 65:163–174PubMedGoogle Scholar
  52. 52.
    Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19:513–518PubMedCrossRefGoogle Scholar
  53. 53.
    Otero AL, Hutcheson L (1993) A comparison of the doubled semitendinosus/gracilis and central third of the patellar tendon autografts in arthroscopic anterior cruciate ligament reconstruction. Arthroscopy 9:143–148PubMedCrossRefGoogle Scholar
  54. 54.
    Papadonikolakis A, Cooper L, Stergiou N, Georgoulis AD, Soucacos PN (2003) Compensatory mechanisms in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc 11:235–243PubMedCrossRefGoogle Scholar
  55. 55.
    Petersen W, Laprell H (1999) Combined injuries of the medial collateral ligament and the anterior cruciate ligament. Early ACL reconstruction versus late ACL reconstruction. Arch Orthop Trauma Surg 119:258–262PubMedCrossRefGoogle Scholar
  56. 56.
    Pua YH, Bryant AL, Steele JR, Newton RU, Wrigley TV (2008) Isokinetic dynamometry in anterior cruciate ligament injury and reconstruction. Ann Acad Med Singapore 37:330–340PubMedGoogle Scholar
  57. 57.
    Samuelsson K, Andersson D, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials. Arthroscopy 25:1139–1174PubMedCrossRefGoogle Scholar
  58. 58.
    Shelbourne KD, Foulk DA (1995) Timing of surgery in acute anterior cruciate ligament tears on the return of quadriceps muscle strength after reconstruction using an autogenous patellar tendon graft. Am J Sports Med 23:686–689PubMedCrossRefGoogle Scholar
  59. 59.
    Shelbourne KD, Gray T (1997) Anterior cruciate ligament reconstruction with autogenous patellar tendon graft followed by accelerated rehabilitation. A two- to nine-year followup. Am J Sports Med 25:786–795PubMedCrossRefGoogle Scholar
  60. 60.
    Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 18:292–299Google Scholar
  61. 61.
    Smith BA, Livesay GA, Woo SL (1993) Biology and biomechanics of the anterior cruciate ligament. Clin Sports Med 12:637–670PubMedGoogle Scholar
  62. 62.
    Snyder-Mackler L, Fitzgerald GK, Bartolozzi AR III, Ciccotti MG (1997) The relationship between passive joint laxity and functional outcome after anterior cruciate ligament injury. Am J Sports Med 25:191–195PubMedCrossRefGoogle Scholar
  63. 63.
    Sojka P, Sjolander P, Johansson H, Djupsjobacka M (1991) Influence from stretch-sensitive receptors in the collateral ligaments of the knee joint on the gamma-muscle-spindle systems of flexor and extensor muscles. Neurosci Res 11:55–62PubMedCrossRefGoogle Scholar
  64. 64.
    Stijak L, Radonjic V, Nikolic V, Blagojevic Z, Aksic M, Filipovic B (2009) Correlation between the morphometric parameters of the anterior cruciate ligament and the intercondylar width: gender and age differences. Knee Surg Sports Traumatol Arthrosc 17:812–817PubMedCrossRefGoogle Scholar
  65. 65.
    Torry MR, Decker MJ, Viola RW, O’Connor DD, Steadman JR (2000) Intra-articular knee joint effusion induces quadriceps avoidance gait patterns. Clin Biomech (Bristol, Avon) 15:147–159CrossRefGoogle Scholar
  66. 66.
    Tow BP, Chang PC, Mitra AK, Tay BK, Wong MC (2005) Comparing 2-year outcomes of anterior cruciate ligament reconstruction using either patella-tendon or semitendinosus-tendon autografts: a non-randomised prospective study. J Orthop Surg (Hong Kong) 13:139–146Google Scholar
  67. 67.
    Tsepis E, Giakas G, Vagenas G, Georgoulis A (2004) Frequency content asymmetry of the isokinetic curve between ACL deficient and healthy knee. J Biomech 37:857–864PubMedCrossRefGoogle Scholar
  68. 68.
    Van d V, Gill TJ, DeFrate LE, Papannagari R, Li G (2008) The effect of anterior cruciate ligament deficiency and reconstruction on the patellofemoral joint. Am J Sports Med 36:1150–1159CrossRefGoogle Scholar
  69. 69.
    Webster KE, Wittwer JE, O’Brien J, Feller JA (2005) Gait patterns after anterior cruciate ligament reconstruction are related to graft type. Am J Sports Med 33:247–254PubMedCrossRefGoogle Scholar
  70. 70.
    West RV, Harner CD (2005) Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 13:197–207PubMedGoogle Scholar
  71. 71.
    Witvrouw E, Bellemans J, Verdonk R, Cambier D, Coorevits P, Almqvist F (2001) Patellar tendon vs. doubled semitendinosus and gracilis tendon for anterior cruciate ligament reconstruction. Int Orthop 25:308–311PubMedCrossRefGoogle Scholar
  72. 72.
    Yunes M, Richmond JC, Engels EA, Pinczewski LA (2001) Patellar versus hamstring tendons in anterior cruciate ligament reconstruction: a meta-analysis. Arthroscopy 17:248–257PubMedCrossRefGoogle Scholar
  73. 73.
    Zatterstrom R, Friden T, Lindstrand A, Moritz U (1994) The effect of physiotherapy on standing balance in chronic anterior cruciate ligament insufficiency. Am J Sports Med 22:531–536PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sofia A. Xergia
    • 1
  • Jodie A. McClelland
    • 2
    • 3
  • Joanna Kvist
    • 4
  • Haris S. Vasiliadis
    • 1
    • 5
  • Anastasios D. Georgoulis
    • 1
    Email author
  1. 1.Orthopaedic Sports Medicine Center of Ioannina, Department of Orthopaedic SurgeryUniversity of IoanninaIoanninaGreece
  2. 2.Musculoskeletal Research CentreLa Trobe UniversityMelbourneAustralia
  3. 3.Department of Physical TherapyUniversity of DelawareNewarkUSA
  4. 4.Division of Physiotherapy, Department of Medical and Health SciencesLinköping UniversityLinköpingSweden
  5. 5.Molecular Cell Biology and Regenerative Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden

Personalised recommendations