Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 19, Issue 1, pp 137–143 | Cite as

Human ankle cartilage deformation after different in vivo impact conditions

  • Ans Van GinckelEmail author
  • Fredrik Almqvist
  • Koenraad Verstraete
  • Philip Roosen
  • Erik Witvrouw


Recently, the general finding of increased ankle cartilage stiffness to loading has been challenged, suggesting the need for the investigation of different in vivo loading conditions. Therefore, the objectives of the present study were to determine ankle (talar) cartilage deformation after in vivo loading using 3D volume change calculation and to establish any difference in volume change between four weight-bearing exercises. The four exercises represented increasing impact (bilateral knee bends <unilateral knee bends <drop jumps) as well as two types of loading: dynamic and static loading (i.e. unilateral knee bends and unilateral static stance). Based on MRI, 3D reconstructions of talar cartilage were generated to determine 3D volumes before and after four exercises in 13 healthy subjects (bilateral and unilateral knee bends, static unilateral stance, drop jumps). Mean talar deformation (volume decrease) was 8.3% after bilateral knee bends (P = 0.001), 7.7% after unilateral knee bends (P = 0.020), 14.6% after unilateral static stance (P < 0.001), 12.5% after drop jumps (P = 0.001). Statistical analysis also revealed deformation to be significantly higher after unilateral static stance than after unilateral knee bends (P = 0.017). These results suggest that talar cartilage endures substantial deformation during in vivo loading characterized by more deformation (i.e. higher volume change) after static than after dynamic loading.


In vivo Exercise Ankle Cartilage 



This research was partly funded by Bijzonder Onderzoeksfonds (BOF, special research fund; B/08320/02), Ghent University and by Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen; Research Foundation-Flanders).

Conflicts of interest statement

The authors declare that they have no conflicts of interest.


  1. 1.
    Bingham JT, Papannagari R, Van de Velde SK, Gross C, Gill TJ, Felson DT, Rubash HE, Li G (2008) In vivo cartilage contact deformation in the healthy human tibiofemoral joint. Rheumatology (Oxford) 47:1622–1627CrossRefGoogle Scholar
  2. 2.
    Boocock M, McNair P, Cicuttini F, Stuart A, Sinclair T (2009) The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee. Osteoarthritis Cartilage 17:883–890CrossRefPubMedGoogle Scholar
  3. 3.
    Daniels T, Thomas R (2008) Etiology and biomechanics of ankle arthritis. Foot Ankle Clin 13:341–352CrossRefPubMedGoogle Scholar
  4. 4.
    Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C (2006) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 14(Suppl A):A46–A75CrossRefPubMedGoogle Scholar
  5. 5.
    Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, Reiser M (2005) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64:291–295CrossRefPubMedGoogle Scholar
  6. 6.
    Eckstein F, Lemberger B, Stammberger T, Englmeier KH, Reiser M (2000) Patellar cartilage deformation in vivo after static versus dynamic loading. J Biomech 33:819–825CrossRefPubMedGoogle Scholar
  7. 7.
    Eckstein F, Reiser M, Englmeier KH, Putz R (2001) In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging–from image to data. from data to theory Anat Embryol (Berl) 203:147–173CrossRefGoogle Scholar
  8. 8.
    Fetter NL, Leddy HA, Guilak F, Nunley JA (2006) Composition and transport properties of human ankle and knee cartilage. J Orthop Res 24:211–219CrossRefPubMedGoogle Scholar
  9. 9.
    Herberhold C, Faber S, Stammberger T, Steinlechner M, Putz R, Englmeier KH, Reiser M, Eckstein F (1999) In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J Biomech 32:1287–1295CrossRefPubMedGoogle Scholar
  10. 10.
    Hendren L, Beeson P (2009) A review of the differences between normal and osteoarthritis articular cartilage in human knee and ankle joints. Foot (Edinb) 19:171–176Google Scholar
  11. 11.
    Huch K, Kuettner KE, Dieppe P (1997) Osteoarthritis in ankle and knee joints. Semin Arthritis Rheum 26:667–674CrossRefPubMedGoogle Scholar
  12. 12.
    Hudelmaier M, Glaser C, Hohe J, Englmeier KH, Reiser M, Putz R, Eckstein F (2001) Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum 44:2556–2561CrossRefPubMedGoogle Scholar
  13. 13.
    Kessler MA, Glaser C, Tittel S, Reiser M, Imhoff AB (2006) Volume changes in the menisci and articular cartilage of runners: an in vivo investigation based on 3-D magnetic resonance imaging. Am J Sports Med 34:832–836CrossRefPubMedGoogle Scholar
  14. 14.
    Kleipool RP, Blankevoort L (2010) The relation between geometry and function of the ankle joint complex: a biomechanical review. Knee Surg Sports Traumatol Arthrosc 18(5):618–627Google Scholar
  15. 15.
    Koepp H, Eger W, Muehleman C, Valdellon A, Buckwalter JA, Kuettner KE, Cole AA (1999) Prevalence of articular cartilage degeneration in the ankle and knee joints of human organ donors. J Orthop Sci 4:407–412CrossRefPubMedGoogle Scholar
  16. 16.
    Kuettner KE, Cole AA (2005) Cartilage degeneration in different human joints. Osteoarthritis Cartilage 13:93–103CrossRefPubMedGoogle Scholar
  17. 17.
    Li G, Wan L, Kozanek M (2008) Determination of real-time in vivo cartilage contact deformation in the ankle joint. J Biomech 41:128–136CrossRefPubMedGoogle Scholar
  18. 18.
    Lyyra T, Kiviranta I, Vaatainen U, Helminen HJ, Jurvelin JS (1999) In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res 48:482–487CrossRefPubMedGoogle Scholar
  19. 19.
    Matricali GA, Bartels W, Labey L, Dereymaeker GP, Luyten FP, Vander Sloten J (2009) High inter-specimen variability of baseline data for the tibio-talar contact area. Clin Biomech (Bristol, Avon) 24:117–120CrossRefGoogle Scholar
  20. 20.
    Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394CrossRefPubMedGoogle Scholar
  21. 21.
    Schumacher BL, Su JL, Lindley KM, Kuetttner KE, Cole AA (2002) Horizontally oriented clusters of multiple chondrons in the superficial zone of ankle, but not knee articular cartilage. Anat Rec 266:241–248CrossRefPubMedGoogle Scholar
  22. 22.
    Seedhom BB (2006) Conditioning of cartilage during normal activities is an important factor in the development of osteoarthritis. Rheumatology (Oxford) 45:146–149CrossRefGoogle Scholar
  23. 23.
    Sitoci K, Hudelmaier M, Glaser C et al (2003) Noctural changes of cartilage morphology in healthy subjects. Osteoarthritis and Cartilage 11:S95Google Scholar
  24. 24.
    Suh JK, Li Z, Woo SL (1995) Dynamic behavior of a biphasic cartilage model under cyclic compressive loading. J Biomech 28:357–364CrossRefPubMedGoogle Scholar
  25. 25.
    Suckel A, Muller O, Wachter N, Kluba T (2010) In vitro measurement of intraarticular pressure in the ankle joint. Knee Surg Sports Traumatol Arthrosc 18(5):664–668Google Scholar
  26. 26.
    Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ (2000) Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res 18:739–748CrossRefPubMedGoogle Scholar
  27. 27.
    van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJA (2010) Osteochondral defects in the ankle: why painful?. Knee Surg Sports Traumatol Arthrosc 18(5):570–580Google Scholar
  28. 28.
    Wan L, de Asla RJ, Rubash HE, Li G (2008) In vivo cartilage contact deformation of human ankle joints under full body weight. J Orthop Res 26:1081–1089CrossRefPubMedGoogle Scholar
  29. 29.
    Waterton JC, Solloway S, Foster JE, Keen MC, Gandy S, Middleton BJ, Maciewicz RA, Watt I, Dieppe PA, Taylor CJ (2000) Diurnal variation in the femoral articular cartilage of the knee in young adult humans. Magn Reson Med 43:126–132CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ans Van Ginckel
    • 1
    • 2
    Email author
  • Fredrik Almqvist
    • 3
  • Koenraad Verstraete
    • 4
  • Philip Roosen
    • 5
  • Erik Witvrouw
    • 2
  1. 1.PhD fellow Research Foundation-FlandersBrusselsBelgium
  2. 2.Department of Rehabilitation Sciences and PhysiotherapyGhent UniversityGhentBelgium
  3. 3.Department of Physical Medicine and Orthopaedic SurgeryGhent UniversityGhentBelgium
  4. 4.Department of RadiologyGhent UniversityGhentBelgium
  5. 5.Department of Rehabilitation Sciences and PhysiotherapyArtevelde University CollegeGhentBelgium

Personalised recommendations