Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 18, Issue 4, pp 419–433

The basic science of the subchondral bone

  • Henning Madry
  • C. Niek van Dijk
  • Magdalena Mueller-Gerbl
Knee

Abstract

In the past decades, considerable efforts have been made to propose experimental and clinical treatments for articular cartilage defects. Yet, the problem of cartilage defects extending deep in the underlying subchondral bone has not received adequate attention. A profound understanding of the basic anatomic aspects of this particular site, together with the pathophysiology of diseases affecting the subchondral bone is the key to develop targeted and effective therapeutic strategies to treat osteochondral defects. The subchondral bone consists of the subchondral bone plate and the subarticular spongiosa. It is separated by the cement line from the calcified zone of the articular cartilage. A variable anatomy is characteristic for the subchondral region, reflected in differences in thickness, density, and composition of the subchondral bone plate, contour of the tidemark and cement line, and the number and types of channels penetrating into the calcified cartilage. This review aims at providing insights into the anatomy, morphology, and pathology of the subchondral bone. Individual diseases affecting the subchondral bone, such as traumatic osteochondral defects, osteochondritis dissecans, osteonecrosis, and osteoarthritis are also discussed. A better knowledge of the basic science of the subchondral region, together with additional investigations in animal models and patients may translate into improved therapies for articular cartilage defects that arise from or extend into the subchondral bone.

Keywords

Subchondral bone Subchondral bone plate Osteochondral defects Osteochondritis dissecans Osteonecrosis Osteoarthritis 

References

  1. 1.
    Ahmed AM, Burke DL (1983) In vitro measurement of static pressure distribution in synovial joints—part I: tibial surface of the knee. J Biomech Eng 105:216–225PubMedGoogle Scholar
  2. 2.
    Anderson DV, Lyne ED (1984) Osteochondritis dissecans of the talus: case report on two family members. J Pediatr Orthop 4:356–357PubMedGoogle Scholar
  3. 3.
    Anetzberger H, Muller-Gerbl M, Scherer MA, Metak G, Blumel G, Putz R (1994) Change in subchondral mineralization after reconstruction of the anterior cruciate ligament of the sheep. Unfallchirurg 97:655–660PubMedGoogle Scholar
  4. 4.
    Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr Cartil 16:708–714PubMedGoogle Scholar
  5. 5.
    Armstrong SJ, Read RA, Price R (1995) Topographical variation within the articular cartilage and subchondral bone of the normal ovine knee joint: a histological approach. Osteoarthr Cartil 3:25–33PubMedGoogle Scholar
  6. 6.
    Aspenberg P, Van der Vis H (1998) Migration, particles, and fluid pressure. A discussion of causes of prosthetic loosening. Clin Orthop Relat Res 352:75–80PubMedGoogle Scholar
  7. 7.
    Berndt AL, Harty M (1959) Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am 41-A:988–1020PubMedGoogle Scholar
  8. 8.
    Berry JL, Thaeler-Oberdoerster DA, Greenwald AS (1986) Subchondral pathways to the superior surface of the human talus. Foot Ankle 7:2–9PubMedGoogle Scholar
  9. 9.
    Bhosale AM, Richardson JB (2008) Articular cartilage: structure, injuries and review of management. Br Med Bull 87:77–95PubMedGoogle Scholar
  10. 10.
    Bonde HV, Talman ML, Kofoed H (2005) The area of the tidemark in osteoarthritis—a three-dimensional stereological study in 21 patients. Apmis 113:349–352PubMedGoogle Scholar
  11. 11.
    Braune W, Fischer O (1891) Die Bewegungen des Kniegelenks nach einer neuen Methode am lebenden Menschen gemessen. Abhandlungen der mathematisch-physischen Klasse der Königlich-Sächsischen Gesellschaft der Wissenschaften 17-2, Leipzig 1891, S Hirzel 75–150Google Scholar
  12. 12.
    Bretlau T, Tuxoe J, Larsen L, Jorgensen U, Thomsen HS, Lausten GS (2002) Bone bruise in the acutely injured knee. Knee Surg Sports Traumatol Arthrosc 10:96–101PubMedGoogle Scholar
  13. 13.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895PubMedGoogle Scholar
  14. 14.
    Brown TD, Vrahas MS (1984) The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J Orthop Res 2:32–38PubMedGoogle Scholar
  15. 15.
    Buckwalter JA (2002) Articular cartilage injuries. Clin Orthop Relat Res 402:21–37PubMedGoogle Scholar
  16. 16.
    Bullough PG, Yawitz PS, Tafra L, Boskey AL (1985) Topographical variations in the morphology and biochemistry of adult canine tibial plateau articular cartilage. J Orthop Res 3:1–16PubMedGoogle Scholar
  17. 17.
    Burr DB, Radin EL (2003) Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am 29:675–685PubMedGoogle Scholar
  18. 18.
    Canale ST, Belding RH (1980) Osteochondral lesions of the talus. J Bone Joint Surg Am 62:97–102PubMedGoogle Scholar
  19. 19.
    Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23:1103–1113PubMedGoogle Scholar
  20. 20.
    Clark JM, Huber JD (1990) The structure of the human subchondral plate. J Bone Joint Surg Br 72:866–873PubMedGoogle Scholar
  21. 21.
    Cruess RL (1986) Osteonecrosis of bone. Current concepts as to etiology and pathogenesis. Clin Orthop Relat Res 208:30–39PubMedGoogle Scholar
  22. 22.
    Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD, Kohn D, Trippel SB, Terwilliger EF (2005) Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther 12:229–238PubMedGoogle Scholar
  23. 23.
    Davies NH, Niall D, King LJ, Lavelle J, Healy JC (2004) Magnetic resonance imaging of bone bruising in the acutely injured knee–short-term outcome. Clin Radiol 59:439–445PubMedGoogle Scholar
  24. 24.
    Dewire P, Simkin PA (1996) Subchondral plate thickness reflects tensile stress in the primate acetabulum. J Orthop Res 14:838–841PubMedGoogle Scholar
  25. 25.
    Dore D, Quinn S, Ding C, Winzenberg T, Jones G (2009) Correlates of subchondral bone mineral density: a cross-sectional study. J Bone Miner Res 12:2007–2015Google Scholar
  26. 26.
    Duncan H, Riddle JM, Pitchford W (1985) Osteoarthritis and the subchondral plate. In: Verbruggen G, Veys EM (eds) Degenerative joints, vol 2. Elsevier, London, pp 181–197Google Scholar
  27. 27.
    Duncan H, Jundt J, Riddle JM, Pitchford W, Christopherson T (1987) The tibial subchondral plate. A scanning electron microscopic study. J Bone Joint Surg Am 69:1212–1220PubMedGoogle Scholar
  28. 28.
    Eckstein F, Muller-Gerbl M, Putz R (1992) Distribution of subchondral bone density and cartilage thickness in the human patella. J Anat 180(Pt 3):425–433PubMedGoogle Scholar
  29. 29.
    Eckstein F, Muller-Gerbl M, Steinlechner M, Kierse R, Putz R (1995) Subchondral bone density in the human elbow assessed by computed tomography osteoabsorptiometry: a reflection of the loading history of the joint surfaces. J Orthop Res 13:268–278PubMedGoogle Scholar
  30. 30.
    von Eisenhart-Rothe R, Eckstein F, Müller-Gerbl M, Landgraf J, Rock C, Putz R (1997) Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens. Anat Embryol 195:279–288Google Scholar
  31. 31.
    Erban WK, Kolberg K (1981) Simultaneous mirror image osteochondrosis dissecans in identical twins. Rofo 135:357PubMedGoogle Scholar
  32. 32.
    Fischer H (1988) Darstellung und Anordnung der kollagenen Fibrillen in der Matrix des Gelenkknorpels. Dissertation, Albert-Ludwigs-Universitaet Freiburg, Freiburg i.Br., GermanyGoogle Scholar
  33. 33.
    Furukawa T, Eyre DR, Koide S, Glimcher MJ (1980) Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am 62:79–89PubMedGoogle Scholar
  34. 34.
    Giunta R, Lower N, Kierse R, Wilhelm K, Muller-Gerbl M (1997) Stress on the radiocarpal joint. CT studies of subchondral bone density in vivo. Handchir Mikrochir Plast Chir 29:32–37PubMedGoogle Scholar
  35. 35.
    Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213:626–634PubMedGoogle Scholar
  36. 36.
    Green WT Jr, Martin GN, Eanes ED, Sokoloff L (1970) Microradiographic study of the calcified layer of articular cartilage. Arch Pathol 90:151–158PubMedGoogle Scholar
  37. 37.
    Harada Y, Wevers HW, Cooke TD (1988) Distribution of bone strength in the proximal tibia. J Arthroplasty 3:167–175PubMedGoogle Scholar
  38. 38.
    Holmdahl DE, Ingelmark BE (1948) Der Bau des Gelenkknorpels unter verschiedenen funktionellen Verhaeltnissen. Experimentelle Untersuchungen am Kaninchen. Acta Anat 6:309–375Google Scholar
  39. 39.
    Hulth A (1993) Does osteoarthrosis depend on growth of the mineralized layer of cartilage? Clin Orthop Relat Res 287:19–24PubMedGoogle Scholar
  40. 40.
    Hunziker EB, Rosenberg LC (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78:721–733PubMedGoogle Scholar
  41. 41.
    Hvid I (1988) Mechanical strength of trabecular bone at the knee. Dan Med Bull 35:345–365PubMedGoogle Scholar
  42. 42.
    Hwang J, Bae WC, Shieu W, Lewis CW, Bugbee WD, Sah RL (2008) Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum 58:3831–3842PubMedGoogle Scholar
  43. 43.
    Imhof H, Breitenseher M, Kainberger F, Rand T, Trattnig S (1999) Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging 10:180–192PubMedGoogle Scholar
  44. 44.
    Inoue H (1981) Alterations in the collagen framework of osteoarthritic cartilage and subchondral bone. Int Orthop 5:47–52PubMedGoogle Scholar
  45. 45.
    Jackson DW, Lalor PA, Aberman HM, Simon TM (2001) Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am 83:53–64PubMedGoogle Scholar
  46. 46.
    Johnson LL (2001) Arthroscopic abrasion arthroplasty: a review. Clin Orthop 391:306–317Google Scholar
  47. 47.
    Joy G, Patzakis MJ, Harvey JP Jr (1974) Precise evaluation of the reduction of severe ankle fractures. J Bone Joint Surg Am 56:979–993PubMedGoogle Scholar
  48. 48.
    Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger MD, Kohn D, Trippel SB, Madry H (2006) Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J Gene Med 8:100–111PubMedGoogle Scholar
  49. 49.
    Koenig F (1888) Ueber freie Koerper in den Gelenken. Deutsche Zeitschrift fuer Chirurgie 27:90–109Google Scholar
  50. 50.
    Koshino T, Okamoto R, Takamura K, Tsuchiya K (1979) Arthroscopy in spontaneous osteonecrosis of the knee. Orthop Clin North Am 10:609–618PubMedGoogle Scholar
  51. 51.
    Lane LB, Villacin A, Bullough PG (1977) The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br 59:272–278PubMedGoogle Scholar
  52. 52.
    Layton MW, Goldstein SA, Goulet RW, Feldkamp LA, Kubinski DJ, Bole GG (1988) Examination of subchondral bone architecture in experimental osteoarthritis by microscopic computed axial tomography. Arthritis Rheum 31:1400–1405PubMedGoogle Scholar
  53. 53.
    Lotke PA, Ecker ML (1985) Osteonecrosis of the knee. Orthop Clin North Am 16:797–808PubMedGoogle Scholar
  54. 54.
    Lotz JC, Gerhart TN, Hayes WC (1991) Mechanical properties of metaphyseal bone in the proximal femur. J Biomech 24:317–329PubMedGoogle Scholar
  55. 55.
    Lyons TJ, Stoddart RW, McClure SF, McClure J (2005) The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol 36:207–215PubMedGoogle Scholar
  56. 56.
    Lyons TJ, McClure SF, Stoddart RW, McClure J (2006) The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord 7:52PubMedGoogle Scholar
  57. 57.
    MacDessi SJ, Brophy RH, Bullough PG, Windsor RE, Sculco TP (2008) Subchondral fracture following arthroscopic knee surgery. A series of eight cases. J Bone Joint Surg Am 90:1007–1012PubMedGoogle Scholar
  58. 58.
    Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D, Trippel SB (2005) Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther 12:1171–1179PubMedGoogle Scholar
  59. 59.
    Madry H, Pape D (2008) Autologous chondrocyte transplantation. Orthopade 37:756–763PubMedGoogle Scholar
  60. 60.
    Malinin T, Ouellette EA (2000) Articular cartilage nutrition is mediated by subchondral bone: a long-term autograft study in baboons. Osteoarthr Cartil 8:483–491PubMedGoogle Scholar
  61. 61.
    Meachim G, Allibone R (1984) Topographical variation in the calcified zone of upper femoral articular cartilage. J Anat 139(Pt 2):341–352PubMedGoogle Scholar
  62. 62.
    Milz S (1994) Lueckenbildungen der subchondralen Mineralisierungszone des Tibiaplateaus. Osteologie 3:110–118Google Scholar
  63. 63.
    Milz S, Putz R (1994) Quantitative morphology of the subchondral plate of the tibial plateau. J Anat 185(Pt 1):103–110PubMedGoogle Scholar
  64. 64.
    Milz S, Eckstein F, Putz R (1995) The thickness of the subchondral plate and its correlation with the thickness of the uncalcified articular cartilage in the human patella. Anat Embryol (Berl) 192:437–444Google Scholar
  65. 65.
    Milz S, Eckstein F, Putz R (1997) Thickness distribution of the subchondral mineralization zone of the trochlear notch and its correlation with the cartilage thickness: an expression of functional adaptation to mechanical stress acting on the humeroulnar joint? Anat Rec 248:189–197PubMedGoogle Scholar
  66. 66.
    Monro A (1856) Microgeologie. Th. Billroth, Berlin, p 236Google Scholar
  67. 67.
    Moyad TF, Minas T (2008) Opening wedge high tibial osteotomy: a novel technique for harvesting autograft bone. J Knee Surg 21:80–84PubMedGoogle Scholar
  68. 68.
    Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1989) Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiol 18:507–512PubMedGoogle Scholar
  69. 69.
    Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1990) Computed tomography-osteoabsorptiometry: a mehod of assessing the mechanical condition of the major joints in a living subject. Clinical Biomech 5:193–198Google Scholar
  70. 70.
    Müller-Gerbl M, Hodapp N, Reinbold WD, Putz R (1991) Can CT-osteoabsorptiometry be used to display the distribution of subchondral mineralization Calcif. Tissue Int 48(Suppl 1):68Google Scholar
  71. 71.
    Muller-Gerbl M, Putz R, Kenn R (1992) Demonstration of subchondral bone density patterns by three-dimensional CT osteoabsorptiometry as a noninvasive method for in vivo assessment of individual long-term stresses in joints. J Bone Miner Res 7(Suppl 2):S411–S418PubMedGoogle Scholar
  72. 72.
    Muller-Gerbl M (1998) The subchondral bone plate. Adv Anat Embryol Cell Biol 141:1–134Google Scholar
  73. 73.
    Muller-Gerbl M, Dalstra M, Ding M, Linsenmeier U, Putz R, Hvid I (1998) Distribution of strength and mineralization in the subchondral bone plate of human tibial heads. J Biomech 31(Suppl 1):123 Proceedings of the 11th conference of the european society of biomechanicsGoogle Scholar
  74. 74.
    Muraoka T, Hagino H, Okano T, Enokida M, Teshima R (2007) Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis. Arthritis Rheum 56:3366–3374PubMedGoogle Scholar
  75. 75.
    Nakamae A, Engebretsen L, Bahr R, Krosshaug T, Ochi M (2006) Natural history of bone bruises after acute knee injury: clinical outcome and histopathological findings. Knee Surg Sports Traumatol Arthrosc 14:1252–1258PubMedGoogle Scholar
  76. 76.
    Newberry WN, Garcia JJ, Mackenzie CD, Decamp CE, Haut RC (1998) Analysis of acute mechanical insult in an animal model of post-traumatic osteoarthrosis. J Biomech Eng 120:704–709PubMedGoogle Scholar
  77. 77.
    Newberry WN, Mackenzie CD, Haut RC (1998) Blunt impact causes changes in bone and cartilage in a regularly exercised animal model. J Orthop Res 16:348–354PubMedGoogle Scholar
  78. 78.
    Noble J, Alexander K (1985) Studies of tibial subchondral bone density and its significance. J Bone Joint Surg Am 67:295–302PubMedGoogle Scholar
  79. 79.
    Odgaard A, Pedersen CM, Bentzen SM, Jorgensen J, Hvid I (1989) Density changes at the proximal tibia after medial meniscectomy. J Orthop Res 7:744–753PubMedGoogle Scholar
  80. 80.
    Paget J (1870) On the production of the loose bodies in joints. St. Bartholomew’s Hosp Rep 6:1Google Scholar
  81. 81.
    Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L (2009) In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 27:1347–1352PubMedGoogle Scholar
  82. 82.
    Pape D, Seil R, Kohn D, Schneider G (2004) Imaging of early stages of osteonecrosis of the knee. Orthop Clin North Am 35:293–303PubMedGoogle Scholar
  83. 83.
    Pedersen DR, Crowninshield RD, Brand RA, Johnston RC (1982) An axisymmetric model of acetabular components in total hip arthroplasty. J Biomech 15:305–315PubMedGoogle Scholar
  84. 84.
    Pridie KH (1959) A method of resurfacing knee joints. Proceedings of the British orthopaedic association. J Bone Joint Surg Br 41:618Google Scholar
  85. 85.
    Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, Salter D, van den Berg WB (2006) Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil 14:13–29PubMedGoogle Scholar
  86. 86.
    Pugh JW, Rose RM, Radin EL (1973) Elastic and viscoelastic properties of trabecular bone: dependence on structure. J Biomech 6:475–485PubMedGoogle Scholar
  87. 87.
    Pugh JW, Radin EL, Rose RM (1974) Quantitative studies of human subchondral cancellous bone. Its relationship to the state of its overlying cartilage. J Bone Joint Surg Am 56:313–321PubMedGoogle Scholar
  88. 88.
    Radin EL, Paul IL (1970) Does cartilage compliance reduce skeletal impact loads? The relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone. Arthritis Rheum 13:139–144PubMedGoogle Scholar
  89. 89.
    Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 213:34–40PubMedGoogle Scholar
  90. 90.
    Roemer FW, Bohndorf K (2002) Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI. Skeletal Radiol 31:615–623PubMedGoogle Scholar
  91. 91.
    Rudberg U, Ahlback SO, Uden R, Rydberg J (1993) Radiocolloid uptake in spontaneous osteonecrosis of the knee. A case report. Clin Orthop Relat Res 287:25–29PubMedGoogle Scholar
  92. 92.
    Schlichting K, Schell H, Kleemann RU, Schill A, Weiler A, Duda GN, Epari DR (2008) Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. Am J Sports Med 36:2379–2391PubMedGoogle Scholar
  93. 93.
    Schunke M, Tillmann B, Schleicher A, Pointner H (1987) Biomechanische und histochemische Untersuchungen am Tibiaplateau des Menschen. Verh Anat Ges 81:451–453Google Scholar
  94. 94.
    Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 75:532–553PubMedGoogle Scholar
  95. 95.
    Shepherd DE, Seedhom BB (1999) Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 58:27–34PubMedGoogle Scholar
  96. 96.
    Simkin PA, Graney DO, Fiechtner JJ (1980) Roman arches, human joints, and disease: differences between convex and concave sides of joints. Arthritis Rheum 23:1308–1311PubMedGoogle Scholar
  97. 97.
    Simkin PA, Heston TF, Downey DJ, Benedict RS, Choi HS (1991) Subchondral architecture in bones of the canine shoulder. J Anat 175:213–227PubMedGoogle Scholar
  98. 98.
    Singh I (1978) The architecture of cancellous bone. J Anat 127:305–310PubMedGoogle Scholar
  99. 99.
    Soucacos PN, Xenakis TH, Beris AE, Soucacos PK, Georgoulis A (1997) Idiopathic osteonecrosis of the medial femoral condyle. Classification and treatment. Clin Orthop Relat Res 341:82–89PubMedGoogle Scholar
  100. 100.
    Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop 391:S362–S369PubMedGoogle Scholar
  101. 101.
    Sugimoto K, Takakura Y, Tohno Y, Kumai T, Kawate K, Kadono K (2005) Cartilage thickness of the talar dome. Arthroscopy 21:401–404PubMedCrossRefGoogle Scholar
  102. 102.
    Takeda M, Higuchi H, Kimura M, Kobayashi Y, Terauchi M, Takagishi K (2008) Spontaneous osteonecrosis of the knee: histopathological differences between early and progressive cases. J Bone Joint Surg Br 90:324–329PubMedGoogle Scholar
  103. 103.
    Thordarson DB, Motamed S, Hedman T, Ebramzadeh E, Bakshian S (1997) The effect of fibular malreduction on contact pressures in an ankle fracture malunion model. J Bone Joint Surg Am 79:1809–1815PubMedGoogle Scholar
  104. 104.
    Uchio Y, Ochi M, Adachi N, Nishikori T, Kawasaki K (2001) Intraosseous hypertension and venous congestion in osteonecrosis of the knee. Clin Orthop Relat Res 384:217–223PubMedGoogle Scholar
  105. 105.
    Van der Vis HM, Aspenberg P, Marti RK, Tigchelaar W, Van Noorden CJ (1998) Fluid pressure causes bone resorption in a rabbit model of prosthetic loosening. Clin Orthop Relat Res 350:201–208PubMedGoogle Scholar
  106. 106.
    van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJG (2010) The natural history of osteochondral lesions in the ankle. JAAOS Instr Course Lect 59 (in press)Google Scholar
  107. 107.
    Vellet AD, Marks PH, Fowler PJ, Munro TG (1991) Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology 178:271–276PubMedGoogle Scholar
  108. 108.
    Woods K, Harris I (1995) Osteochondritis dissecans of the talus in identical twins. J Bone Joint Surg Br 77:331PubMedGoogle Scholar
  109. 109.
    Yamamoto T, Bullough PG (2000) Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 82:858–866PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Henning Madry
    • 1
  • C. Niek van Dijk
    • 2
  • Magdalena Mueller-Gerbl
    • 3
  1. 1.Institute for Experimental Orthopaedics, Department of Orthopaedic SurgerySaarland University Medical CenterHomburgGermany
  2. 2.Department of Orthopaedic Surgery, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Anatomisches InstituteBaselSwitzerland

Personalised recommendations