Risk factors for a contralateral anterior cruciate ligament injury

Knee

Abstract

Contralateral anterior cruciate ligament (ACL) injuries are together with the risk of developing osteoarthritis of the knee and the risk of re-rupture/graft failure important aspects to consider after an ACL injury. The aim of this review was to perform a critical analysis of the literature on the risk factors associated with a contralateral ACL injury. A better understanding of these risk factors will help in the treatment of patients with unilateral ACL injuries and in the development of interventions designed to prevent contralateral ACL injuries. A Medline search was conducted to find studies investigating risk factors for a contralateral ACL injury, as well as studies where a contralateral ACL injury was the outcome of the study. Twenty studies describing the risk of a contralateral ACL rupture, or specific risk factors for a contralateral ACL injury, were found and systematically reviewed. In 13 of these studies, patients were followed prospectively after a unilateral ACL injury. The evidence presented in the literature shows that the risk of sustaining a contralateral ACL injury is greater than the risk of sustaining a first time ACL injury. Return to a high activity level after a unilateral ACL injury was the most important risk factor of sustaining a contralateral ACL injury. There was inconclusive evidence of the relevance of factors such as female gender, family history of ACL injuries, and a narrow intercondylar notch, as risk factors for a contralateral ACL injury. Risk factors acquired secondary to the ACL injury, such as altered biomechanics and altered neuromuscular function, affecting both the injured and the contralateral leg, most likely, further increase the risk of a contralateral ACL injury. This literature review indicates that the increased risk of sustaining a contralateral ACL injury should be contemplated, when considering the return to a high level of activity after an ACL injury.

Keywords

Anterior cruciate ligament Bilateral Contralateral Intercondylar notch Neuromuscular Biomechanical Activity 

References

  1. 1.
    Ageberg E (2002) Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation—using the anterior cruciate ligament-injured knee as model. J Electromyogr Kinesiol 12:205–212PubMedCrossRefGoogle Scholar
  2. 2.
    Ageberg E, Friden T (2008) Normalized motor function but impaired sensory function after unilateral non-reconstructed ACL injury: patients compared with uninjured controls. Knee Surg Sports Traumatol Arthrosc 16:449–456PubMedCrossRefGoogle Scholar
  3. 3.
    Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med 33:524–530PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmad CS, Clark AM, Heilmann N, Schoeb JS, Gardner TR, Levine WN (2006) Effect of gender and maturity on quadriceps-to-hamstring strength ratio and anterior cruciate ligament laxity. Am J Sports Med 34:370–374PubMedCrossRefGoogle Scholar
  5. 5.
    Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, Cugat R (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 17:705–729PubMedCrossRefGoogle Scholar
  6. 6.
    Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, Cugat R (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surg Sports Traumatol Arthrosc 17:859–879PubMedCrossRefGoogle Scholar
  7. 7.
    Allen MK, Glasoe WM (2000) Metrecom measurement of navicular drop in subjects with anterior cruciate ligament injury. J Athl Train 35:403–406PubMedGoogle Scholar
  8. 8.
    Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW (2001) Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29:58–66PubMedGoogle Scholar
  9. 9.
    Anderson AF, Lipscomb AB, Liudahl KJ, Addlestone RB (1987) Analysis of the intercondylar notch by computed tomography. Am J Sports Med 15:547–552PubMedCrossRefGoogle Scholar
  10. 10.
    Andersson D, Samuelsson K, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to surgical technique and rehabilitation: an assessment of randomized controlled trials. Arthroscopy 25:653–685PubMedGoogle Scholar
  11. 11.
    Arendt EA, Agel J, Dick R (1999) Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34:86–92PubMedGoogle Scholar
  12. 12.
    Aune AK, Holm I, Risberg MA, Jensen HK, Steen H (2001) Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction. Am J Sports Med 29:722–728PubMedGoogle Scholar
  13. 13.
    Bach BR Jr, Warren RF, Flynn WM, Kroll M, Wickiewiecz TL (1990) Arthrometric evaluation of knees that have a torn anterior cruciate ligament. J Bone Joint Surg Am 72:1299–1306PubMedGoogle Scholar
  14. 14.
    Barrett DS (1991) Proprioception and function after anterior cruciate reconstruction. J Bone Joint Surg Br 73:833–837PubMedGoogle Scholar
  15. 15.
    Beckett ME, Massie DL, Bowers KD, Stoll DA (1992) Incidence of hyperpronation in the ACL injured knee: a clinical perspective. J Athl Train 27:58–62PubMedGoogle Scholar
  16. 16.
    Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72:871–877PubMedGoogle Scholar
  17. 17.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573–578PubMedGoogle Scholar
  18. 18.
    Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22:894–899PubMedGoogle Scholar
  19. 19.
    Chaudhari AM, Zelman EA, Flanigan DC, Kaeding CC, Nagaraja HN (2009) Anterior cruciate ligament-injured subjects have smaller anterior cruciate ligaments than matched controls. Am J Sports Med 37:1282–1287PubMedCrossRefGoogle Scholar
  20. 20.
    Comerford EJ, Tarlton JF, Avery NC, Bailey AJ, Innes JF (2006) Distal femoral intercondylar notch dimensions and their relationship to composition and metabolism of the canine anterior cruciate ligament. Osteoarthritis Cartilage 14:273–278PubMedCrossRefGoogle Scholar
  21. 21.
    Comerford EJ, Tarlton JF, Innes JF, Johnson KA, Amis AA, Bailey AJ (2005) Metabolism and composition of the canine anterior cruciate ligament relate to differences in knee joint mechanics and predisposition to ligament rupture. J Orthop Res 23:61–66PubMedCrossRefGoogle Scholar
  22. 22.
    Corry IS, Webb JM, Clingeleffer AJ, Pinczewski LA (1999) Arthroscopic reconstruction of the anterior cruciate ligament. Am J Sports Med 27:444–454PubMedGoogle Scholar
  23. 23.
    Dahlberg L, Roos H, Saxne T, Heinegard D, Lark MW, Hoerrner LA, Lohmander LS (1994) Cartilage metabolism in the injured and uninjured knee of the same patient. Ann Rheum Dis 53:823–827PubMedCrossRefGoogle Scholar
  24. 24.
    Davis TJ, Shelbourne KD, Klootwyk TE (1999) Correlation of the intercondylar notch width of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc 7:209–214PubMedCrossRefGoogle Scholar
  25. 25.
    Deehan DJ, Salmon LJ, Webb VJ, Davies A, Pinczewski LA (2000) Endoscopic reconstruction of the anterior cruciate ligament with an ipsilateral patellar tendon autograft. A prospective longitudinal five-year study. J Bone Joint Surg Br 82:984–991PubMedCrossRefGoogle Scholar
  26. 26.
    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone J Surg Br 76:745–749Google Scholar
  27. 27.
    Devita P, Hortobagyi T, Barrier J, Torry M, Glover KL, Speroni DL, Money J, Mahar MT (1997) Gait adaptations before and after anterior cruciate ligament reconstruction surgery. Med Sci Sports Exerc 29:853–859PubMedGoogle Scholar
  28. 28.
    Dienst M, Schneider G, Altmeyer K, Voelkering K, Georg T, Kramann B, Kohn D (2007) Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 127:253–260 18PubMedCrossRefGoogle Scholar
  29. 29.
    Draganich LF, Vahey JW (1990) An in vitro study of anterior cruciate ligament strain induced by quadriceps and hamstrings forces. J Orthop Res 8:57–63PubMedCrossRefGoogle Scholar
  30. 30.
    Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Menetrey J (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14:204–213PubMedCrossRefGoogle Scholar
  31. 31.
    Eiling E, Bryant AL, Petersen W, Murphy A, Hohmann E (2007) Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surg Sports Traumatol Arthrosc 15:126–132PubMedCrossRefGoogle Scholar
  32. 32.
    Faude O, Junge A, Kindermann W, Dvorak J (2005) Injuries in female soccer players: a prospective study in the German national league. Am J Sports Med 33:1694–1700PubMedCrossRefGoogle Scholar
  33. 33.
    Faude O, Junge A, Kindermann W, Dvorak J (2006) Risk factors for injuries in elite female soccer players. Br J Sports Med 40:785–790PubMedCrossRefGoogle Scholar
  34. 34.
    Flynn RK, Pedersen CL, Birmingham TB, Kirkley A, Jackowski D, Fowler PJ (2005) The familial predisposition toward tearing the anterior cruciate ligament: a case control study. Am J Sports Med 33:23–28PubMedCrossRefGoogle Scholar
  35. 35.
    Frank CB, Loitz B, Bray R, Chimich D, King G, Shrive N (1994) Abnormality of the contralateral ligament after injuries of the medial collateral ligament. An experimental study in rabbits. J Bone Joint Surg Am 76:403–412PubMedGoogle Scholar
  36. 36.
    Friden T, Roberts D, Ageberg E, Walden M, Zatterstrom R (2001) Review of knee proprioception and the relation to extremity function after an anterior cruciate ligament rupture. J Orthop Sports Phys Ther 31:567–576PubMedGoogle Scholar
  37. 37.
    Friden T, Roberts D, Zatterstrom R, Lindstrand A, Moritz U (1999) Proprioceptive defects after an anterior cruciate ligament rupture—the relation to associated anatomical lesions and subjective knee function. Knee Surg Sports Traumatol Arthrosc 7:226–231PubMedCrossRefGoogle Scholar
  38. 38.
    Gillquist J, Messner K (1995) Instrumented analysis of the pivot shift phenomenon after reconstruction of the anterior cruciate ligament. Int J Sports Med 16:484–488PubMedCrossRefGoogle Scholar
  39. 39.
    Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Garrick JG, Hewett TE, Huston L, Ireland ML, Johnson RJ, Kibler WB, Lephart S, Lewis JL, Lindenfeld TN, Mandelbaum BR, Marchak P, Teitz CC, Wojtys EM (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8:141–150PubMedGoogle Scholar
  40. 40.
    Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, Demaio M, Dick RW, Engebretsen L, Garrett WE Jr, Hannafin JA, Hewett TE, Huston LJ, Ireland ML, Johnson RJ, Lephart S, Mandelbaum BR, Mann BJ, Marks PH, Marshall SW, Myklebust G, Noyes FR, Powers C, Shields C Jr, Shultz SJ, Silvers H, Slauterbeck J, Taylor DC, Teitz CC, Wojtys EM, Yu B (2006) Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34:1512–1532PubMedCrossRefGoogle Scholar
  41. 41.
    Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RC Jr, Dabezies E, Beynnon BD (2009) Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. doi:10.1177/0363546509349055
  42. 42.
    Harner CD, Paulos LE, Greenwald AE, Rosenberg TD, Cooley VC (1994) Detailed analysis of patients with bilateral anterior cruciate ligament injuries. Am J Sports Med 22:37–43PubMedCrossRefGoogle Scholar
  43. 43.
    Herzog RJ, Silliman JF, Hutton K, Rodkey WG, Steadman JR (1994) Measurements of the intercondylar notch by plain film radiography and magnetic resonance imaging. Am J Sports Med 22:204–210PubMedCrossRefGoogle Scholar
  44. 44.
    Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33:492–501PubMedCrossRefGoogle Scholar
  45. 45.
    Hewett TE, Zazulak BT, Myer GD (2007) Effects of the menstrual cycle on anterior cruciate ligament injury risk: a systematic review. Am J Sports Med 35:659–668PubMedCrossRefGoogle Scholar
  46. 46.
    Hewett TE, Zazulak BT, Myer GD, Ford KR (2005) A review of electromyographic activation levels, timing differences, and increased anterior cruciate ligament injury incidence in female athletes. Br J Sports Med 39:347–350PubMedCrossRefGoogle Scholar
  47. 47.
    Hiemstra LA, Webber S, MacDonald PB, Kriellaars DJ (2007) Contralateral limb strength deficits after anterior cruciate ligament reconstruction using a hamstring tendon graft. Clin Biomech (Bristol, Avon) 22:543–550CrossRefGoogle Scholar
  48. 48.
    Jerosch J, Prymka M (1996) Knee joint proprioception in normal volunteers and patients with anterior cruciate ligament tears, taking special account of the effect of a knee bandage. Arch Orthop Trauma Surg 115:162–166PubMedCrossRefGoogle Scholar
  49. 49.
    Johansson H, Sjolander P, Sojka P (1990) A sensory role for the cruciate ligaments. Clin Orthop Relat Res 268:161–178Google Scholar
  50. 50.
    Kandel ER, Schwartz JH, Jessel TM (2000) Principles of neural science, 4th edn. Elsevier, New YorkGoogle Scholar
  51. 51.
    Khoschnau S, Melhus H, Jacobson A, Rahme H, Ribom E, Grundberg E, Mallmin H, Michaelsson K (2008) Type 1 collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. Am J Sports Med 36:2432–2436PubMedCrossRefGoogle Scholar
  52. 52.
    Konishi Y, Aihara Y, Sakai M, Ogawa G, Fukubayashi T (2007) Gamma loop dysfunction in the quadriceps femoris of patients who underwent anterior cruciate ligament reconstruction remains bilaterally. Scand J Med Sci Sports 17:393–399PubMedCrossRefGoogle Scholar
  53. 53.
    Konishi Y, Fukubayashi T, Takeshita D (2002) Possible mechanism of quadriceps femoris weakness in patients with ruptured anterior cruciate ligament. Med Sci Sports Exerc 34:1414–1418PubMedCrossRefGoogle Scholar
  54. 54.
    Konishi Y, Konishi H, Fukubayashi T (2003) Gamma loop dysfunction in quadriceps on the contralateral side in patients with ruptured ACL. Med Sci Sports Exerc 35:897–900PubMedCrossRefGoogle Scholar
  55. 55.
    Kostogiannis I, Ageberg E, Neuman P, Dahlberg L, Fridén T, Roos H (2007) Activity level and subjective knee function 15 years after anterior cruciate ligament injury. Am J Sports Med 35:1135–1143PubMedCrossRefGoogle Scholar
  56. 56.
    Krogsgaard, Dyhre-Poulsen P, Fischer-Rasmussen T (2002) Cruciate ligament reflexes. J Electromyogr Kinesiol 12:177–182PubMedCrossRefGoogle Scholar
  57. 57.
    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35:359–367PubMedCrossRefGoogle Scholar
  58. 58.
    LaPrade RF, Burnett QM II (1994) Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med 22:198–202 (discussion 203)PubMedCrossRefGoogle Scholar
  59. 59.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35:1756–1769PubMedCrossRefGoogle Scholar
  60. 60.
    Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–3152PubMedCrossRefGoogle Scholar
  61. 61.
    Lombardo S, Sethi PM, Starkey C (2005) Intercondylar notch stenosis is not a risk factor for anterior cruciate ligament tears in professional male basketball players: an 11-year prospective study. Am J Sports Med 33:29–34PubMedCrossRefGoogle Scholar
  62. 62.
    Lund-Hanssen H, Gannon J, Engebretsen L, Holen KJ, Anda S, Vatten L (1994) Intercondylar notch width and the risk for anterior cruciate ligament rupture. A case-control study in 46 female handball players. Acta Orthop Scand 65:529–532PubMedCrossRefGoogle Scholar
  63. 63.
    Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13:930–935PubMedCrossRefGoogle Scholar
  64. 64.
    Meister K, Talley MC, Horodyski MB, Hartzel JS, Batts J (1998) Caudal slope of the tibia and its relationship to noncontact injuries to the ACL. Am J Knee Surg 11:217–219PubMedGoogle Scholar
  65. 65.
    Motohashi M (2004) Profile of bilateral anterior cruciate ligament injuries: a retrospective follow-up study. J Orthop Surg (Hong Kong) 12:210–215Google Scholar
  66. 66.
    Mountcastle SB, Posner M, Kragh JF Jr, Taylor DC (2007) Gender differences in anterior cruciate ligament injury vary with activity: epidemiology of anterior cruciate ligament injuries in a young, athletic population. Am J Sports Med 35:1635–1642PubMedCrossRefGoogle Scholar
  67. 67.
    Myer GD, Ford KR, Paterno MV, Nick TG, Hewett TE (2008) The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am J Sports Med 36:1073–1080PubMedCrossRefGoogle Scholar
  68. 68.
    Myklebust G, Holm I, Maehlum S, Engebretsen L, Bahr R (2003) Clinical, functional, and radiologic outcome in team handball players 6 to 11 years after anterior cruciate ligament injury: a follow-up study. Am J Sports Med 31:981–989PubMedGoogle Scholar
  69. 69.
    Neuman P, Englund M, Kostogiannis I, Friden T, Roos H, Dahlberg LE (2008) Prevalence of tibiofemoral osteoarthritis 15 years after nonoperative treatment of anterior cruciate ligament injury: a prospective cohort study. Am J Sports Med 36:1717–1725PubMedCrossRefGoogle Scholar
  70. 70.
    Oates KM, Van Eenenaam DP, Briggs K, Homa K, Sterett WI (1999) Comparative injury rates of uninjured, anterior cruciate ligament-deficient, and reconstructed knees in a skiing population. Am J Sports Med 27:606–610PubMedGoogle Scholar
  71. 71.
    Orchard J, Seward H, McGivern J, Hood S (2001) Intrinsic and extrinsic risk factors for anterior cruciate ligament injury in Australian footballers. Am J Sports Med 29:196–200PubMedGoogle Scholar
  72. 72.
    Pap G, Machner A, Nebelung W, Awiszus F (1999) Detailed analysis of proprioception in normal and ACL-deficient knees. J Bone Joint Surg Br 81:764–768PubMedCrossRefGoogle Scholar
  73. 73.
    Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 35:564–574PubMedCrossRefGoogle Scholar
  74. 74.
    Pinczewski LA, Salmon LJ, Russell VJ, Clingeleffer AJ (2002) A five-year comparison of patellar tendon versus four-strand hamstring tendon autograft for arthroscopic reconstruction of the anterior cruciate ligament. Am J Sports Med 30:523–536PubMedGoogle Scholar
  75. 75.
    Posthumus M, September AV, Keegan M, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M (2009) Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med 43:352–356PubMedCrossRefGoogle Scholar
  76. 76.
    Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M (2009) The association between the COL12A1 gene and anterior cruciate ligament ruptures. Br J Sports Med. doi:10.1136/bjsm.2009.060756
  77. 77.
    Posthumus M, September AV, O’Cuinneagain D, van der Merwe W, Schwellnus MP, Collins M (2009) The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med 37:2234–2240PubMedCrossRefGoogle Scholar
  78. 78.
    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and knee injury-reduction regiment. Arthroscopy 23:1320–1325PubMedCrossRefGoogle Scholar
  79. 79.
    Pujol N, Blanchi MP, Chambat P (2007) The incidence of anterior cruciate ligament injuries among competitive Alpine skiers: a 25-year investigation. Am J Sports Med 35:1070–1074PubMedCrossRefGoogle Scholar
  80. 80.
    Reider B, Arcand MA, Diehl LH, Mroczek K, Abulencia A, Stroud CC, Palm M, Gilbertson J, Staszak P (2003) Proprioception of the knee before and after anterior cruciate ligament reconstruction. Arthroscopy 19:2–12PubMedCrossRefGoogle Scholar
  81. 81.
    Renstrom P, Arms SW, Stanwyck TS, Johnson RJ, Pope MH (1986) Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14:83–87PubMedCrossRefGoogle Scholar
  82. 82.
    Renstrom P, Ljungqvist A, Arendt E, Beynnon B, Fukubayashi T, Garrett W, Georgoulis T, Hewett TE, Johnson R, Krosshaug T, Mandelbaum B, Micheli L, Myklebust G, Roos E, Roos H, Schamasch P, Shultz S, Werner S, Wojtys E, Engebretsen L (2008) Non-contact ACL injuries in female athletes: an International olympic committee current concepts statement. Br J Sports Med 42:394–412PubMedCrossRefGoogle Scholar
  83. 83.
    Roberts D, Friden T, Stomberg A, Lindstrand A, Moritz U (2000) Bilateral proprioceptive defects in patients with a unilateral anterior cruciate ligament reconstruction: a comparison between patients and healthy individuals. J Orthop Res 18:565–571PubMedCrossRefGoogle Scholar
  84. 84.
    Roe J, Pinzezewski LA, Russel VJ, Salmon LJ, Kawamata T, Chew M (2005) A 7-year follow-up of patellar tendon and hamstring tendoin grafts for arthroscopic anterior cruciate ligament reconstruction. Am J Sports Med 33:1337–1345PubMedCrossRefGoogle Scholar
  85. 85.
    Salem GJ, Salinas R, Harding FV (2003) Bilateral kinematic and kinetic analysis of the squat exercise after anterior cruciate ligament reconstruction. Arch Phys Med Rehabil 84:1211–1216PubMedCrossRefGoogle Scholar
  86. 86.
    Salmon L, Russell V, Musgrove T, Pinczewski L, Refshauge K (2005) Incidence and risk factors for graft rupture and contralateral rupture after anterior cruciate ligament reconstruction. Arthroscopy 21:948–957PubMedCrossRefGoogle Scholar
  87. 87.
    Sarwar R, Niclos BB, Rutherford OM (1996) Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol 493(Pt 1):267–272PubMedGoogle Scholar
  88. 88.
    Schickendantz MS, Weiker GG (1993) The predictive value of radiographs in the evaluation of unilateral and bilateral anterior cruciate ligament injuries. Am J Sports Med 21:110–113PubMedCrossRefGoogle Scholar
  89. 89.
    September AV, Schwellnus MP, Collins M (2007) Tendon and ligament injuries: the genetic component. Br J Sports Med 41:241–246PubMedCrossRefGoogle Scholar
  90. 90.
    Shelbourne KD, Davis TJ, Klootwyk TE (1998) The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med 26:402–408PubMedGoogle Scholar
  91. 91.
    Shelbourne KD, Facibene WA, Hunt JJ (1997) Radiographic and intraoperative intercondylar notch width measurements in men and women with unilateral and bilateral anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc 5:229–233PubMedCrossRefGoogle Scholar
  92. 92.
    Smith J, Szczerba JE, Arnold BL, Perrin DH, Martin DE (1997) Role of hyperpronation as a possible risk factor for anterior cruciate ligament injuries. J Athl Train 32:25–28PubMedGoogle Scholar
  93. 93.
    Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15:207–213PubMedCrossRefGoogle Scholar
  94. 94.
    Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med 21:535–539PubMedCrossRefGoogle Scholar
  95. 95.
    Souryal TO, Moore HA, Evans JP (1988) Bilaterality in anterior cruciate ligament injuries: associated intercondylar notch stenosis. Am J Sports Med 16:449–454PubMedCrossRefGoogle Scholar
  96. 96.
    Stijak L, Herzog RF, Schai P (2008) Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc 16:112–117PubMedCrossRefGoogle Scholar
  97. 97.
    Swanik CB, Covassin T, Stearne DJ, Schatz P (2007) The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med 35:943–948PubMedCrossRefGoogle Scholar
  98. 98.
    Sward P, Kostogiannis I, Neuman P, von Porat A, Boegard T, Roos H (2009) Differences in the radiological characteristics between post-traumatic and non-traumatic knee osteoarthritis. Scand J Med Sci Sports. doi:10.1111/j.1600-0838.2009.01000.x
  99. 99.
    Teixeira da Fonseca S, Silva PL, Ocarino JM, Guimaraes RB, Oliveira MT, Lage CA (2004) Analyses of dynamic co-contraction level in individuals with anterior cruciate ligament injury. J Electromyogr Kinesiol 14:239–247PubMedCrossRefGoogle Scholar
  100. 100.
    Todd MS, Lalliss S, Garcia E, DeBerardino TM, Cameron KL (2009) The relationship between posterior tibial slope and anterior cruciate ligament injuries. Am J Sports Med. doi:10.1177/0363546509343198
  101. 101.
    Trojian TH, Collins S (2006) The anterior cruciate ligament tear rate varies by race in professional Women’s basketball. Am J Sports Med 34:895–898PubMedCrossRefGoogle Scholar
  102. 102.
    Tsuda E, Okamura Y, Otsuka H, Komatsu T, Tokuya S (2001) Direct evidence of the anterior cruciate ligament-hamstring reflex arc in humans. Am J Sports Med 29:83–87PubMedGoogle Scholar
  103. 103.
    Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31:831–842 29. 30PubMedGoogle Scholar
  104. 104.
    Valeriani M, Restuccia D, Di Lazzaro V, Franceschi F, Fabbriciani C, Tonali P (1999) Clinical and neurophysiological abnormalities before and after reconstruction of the anterior cruciate ligament of the knee. Acta Neurol Scand 99:303–307PubMedCrossRefGoogle Scholar
  105. 105.
    Vescovi JD (2008) Re: effects of the menstrual cycle on anterior cruciate ligament injury risk: a systematic review. Am J Sports Med 36:e4–e5PubMedCrossRefGoogle Scholar
  106. 106.
    Webb JM, Corry IS, Clingeleffer AJ, Pinczewski LA (1998) Endoscopic reconstruction for isolated anterior cruciate ligament rupture. J Bone Joint Surg Br 80:288–294PubMedCrossRefGoogle Scholar
  107. 107.
    Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA (2008) Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J Bone Joint Surg Am 90:815–823PubMedCrossRefGoogle Scholar
  108. 108.
    Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA (2006) The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med 34:269–274PubMedCrossRefGoogle Scholar
  109. 109.
    Wojtys EM, Huston LJ (1994) Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 22:89–104PubMedCrossRefGoogle Scholar
  110. 110.
    von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63:269–273CrossRefGoogle Scholar
  111. 111.
    Wright RW, Dunn WR, Amendola A, Andrish JT, Bergfeld J, Kaeding CC, Marx RG, McCarty EC, Parker RD, Wolcott M, Wolf BR, Spindler KP (2007) Risk of tearing the intact anterior cruciate ligament in the contralateral knee and rupturing the anterior cruciate ligament graft during the first 2 years after anterior cruciate ligament reconstruction. Am J Sports Med 35:1131–1134PubMedCrossRefGoogle Scholar
  112. 112.
    Zatterstrom R, Friden T, Lindstrand A, Moritz U (1994) The effect of physiotherapy on standing balance in chronic anterior cruciate ligament insufficiency. Am J Sports Med 22:531–536PubMedCrossRefGoogle Scholar
  113. 113.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35:1123–1130PubMedCrossRefGoogle Scholar
  114. 114.
    Zazulak BT, Paterno M, Myer GD, Romani WA, Hewett TE (2006) The effects of the menstrual cycle on anterior knee laxity: a systematic review. Sports Med 36:847–862PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of OrthopaedicsLund University and Lund University HospitalLundSweden

Personalised recommendations