Advertisement

A 2-year follow-up of rehabilitation after ACL reconstruction using patellar tendon or hamstring tendon grafts: a prospective randomised outcome study

  • Annette HeijneEmail author
  • Suzanne Werner
Knee

Abstract

Sixty-eight patients were clinically evaluated preoperatively, 3, 5, 7, 9 months, 1 and 2 years after ACL reconstruction, 34 with patellar tendon graft, 34 with hamstring graft. Outcome regarding graft choice and anterior knee laxity (P = 0.04) was in favour of patellar tendon graft. Hamstring graft led to a larger laxity, 2.4 mm compared with patellar tendon graft, 1.3 mm at 1 year and 2.5 mm and 1.5 mm, respectively, at 2 years (P = 0.05). There was a significant difference in rotational knee stability in favour of the patellar tendon graft at all test occasions but 9 months. A general effect regarding graft choice and muscle torque was found at 90°/s for quadriceps (P = 0.03) and hamstrings (P ≤ 0.0001) and at 230°/s for hamstrings (P ≤ 0.0001). No treatment effect regarding graft choice and one-leg hop test, postural sway or knee function was found. No group differences in anterior knee pain were found at any of the test occasions but 2 years in favour of hamstring graft compared to patellar tendon graft (P = 0.04). Patellar tendon graft resulted in higher activity level than hamstring graft at all test occasions but 1 year (P = 0.01). Patellar tendon ACL reconstruction led to more stable knees with less anterior knee laxity and less rotational instability than hamstring ACL reconstruction. Hamstring graft patients had not reached preoperative level in hamstring torque even 2 years after ACL reconstruction. Athletes with patellar tendon graft returned to sports earlier and at a higher level than those with hamstring graft.

Keywords

ACL rehabilitation Knee laxity Muscle strength Subjective outcome 

Notes

Acknowledgments

Funding for this study was provided, in part, by grants from the Swedish National Center for Research in Sports. We also gratefully thank all the patients for sharing their time with us.

References

  1. 1.
    Ageberg E, Roos HP, Grävare-Silbernagel K, Thomeé R, Roos E (2009) Knee extension and flexion muscle power after anterior cruciate ligament reconstruction with patellar tendon graft or hamstring tendons graft: a cross-sectional comparison 3 years post surgery. Knee Surg Sports Traumatol Arthrosc 17:162–169CrossRefPubMedGoogle Scholar
  2. 2.
    Aglietti P, Giron F, Buzzi R, Biddau F, Sasso F (2004) Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective randomized clinical trial. J Bone Joint Surg [Am] 86:2143–2155Google Scholar
  3. 3.
    Arneja S, McConkey OM, Mulpuri K, Chin P, Gilbart MK, Regan WD, Leith JM (2009) Graft Tensioning in anterior cruciate ligament reconstruction: A systematic review of randomized controlled trials. Arthroscopy 25:200–207CrossRefPubMedGoogle Scholar
  4. 4.
    Augustsson J, Thomeé R, Karlsson J (2004) Ability of a new hop test to determine functional deficits after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:350–356CrossRefPubMedGoogle Scholar
  5. 5.
    Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W (1990) Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res 255:204–214PubMedGoogle Scholar
  6. 6.
    Corry IS, Webb JM, Clingeleffer AJ, Pinczewski LA (1999) Arthroscopic reconstruction of the anterior cruciate ligament. A comparison of patellar tendon autograft and four-strand hamstring tendon autograft. Am J Sports Med 27:444–454PubMedGoogle Scholar
  7. 7.
    Daniel DM, Stone ML, Sachs R, Malcom L (1985) Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med 13:401–407CrossRefPubMedGoogle Scholar
  8. 8.
    Eriksson K, Anderberg P, Hamberg P, Löfgren AC, Bredenberg M, Westman I, Wredmark T (2001) A comparison of quadruple semitendinosus and patellar tendon grafts in reconstruction of the anterior cruciate ligament. J Bone Joint Surg [Br] 83:348–354CrossRefGoogle Scholar
  9. 9.
    Farrell M, Richards JG (1986) Analysis of the reliability and validity of the kinetic communicator exercise device. Med Sci Sports Exerc 18:180–185Google Scholar
  10. 10.
    Feller JA, Webster KE (2003) A randomized comparison of patellar tendon and hamstring tendon anterior cruciate ligament reconstruction. Am J Sports Med 31:564–573PubMedGoogle Scholar
  11. 11.
    Gobbi A, Domzalski M, Pascual J (2004) Comparison of anterior cruciate ligament reconstruction in male and female athletes using the patellar tendon and hamstring autografts. Knee Surg Sports Traumatol Arthrosc. 12:534–539CrossRefPubMedGoogle Scholar
  12. 12.
    Goldblatt JP, Fitzsimmons SE, Balk E, Richmond JC (2005) Reconstruction of the anterior cruciate ligament: metaanalysis of patellar tendon versus hamstring g tendon autograft. Arthroscopy 21:791–803CrossRefPubMedGoogle Scholar
  13. 13.
    Gustavsson A, Neeter C, Thomeé P, Silbernagel KG, Augustsson J, Thomeé R, Karlsson J (2006) A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 14:778–788CrossRefPubMedGoogle Scholar
  14. 14.
    Hansen MS, Dieckmann B, Jensen K, Jakobsen BW (2000) The reliability of balance tests performed on the kinaesthetic ability trainer (KAT 2000). Knee Surg Sports Trauma Arthrosc 8:180–185CrossRefGoogle Scholar
  15. 15.
    Hefti F, Müller W (1993) Current state of evaluation of knee ligament lesions. The new IKDC knee evaluation form. Orthopaede 22:351–362Google Scholar
  16. 16.
    Hefti F, Müller W, Jakob RP, Staubli HU (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc 1:226–234CrossRefPubMedGoogle Scholar
  17. 17.
    Heijne A, Werner S (2007) Early versus late start of open kinetic chain quadriceps exercises after ACL reconstruction with patellar tendon or hamstring grafts. A prospective randomised outcome study. Knee Surg Sports Traumatol Arthrosc 15:402–412CrossRefPubMedGoogle Scholar
  18. 18.
    Laxdal G, Sernert N, Ejerhed L, Karlsson J, Kartus JT (2007) A prospective comparison of bone-patellar tendon-bone ligament reconstruction in male patients. Knee Surg Sports Traumatol Arthrosc 15:115–125CrossRefPubMedGoogle Scholar
  19. 19.
    Lidén M, Sernert N, Rostgård-Christensen L, Kartus C, Ejerhed L (2008) Osteoarthritis changes after anterior cruciate ligament reconstruction using bone-patellar tendon-bone or hamstring tendon autografts: a retrospective, 7-year radiographic and clinical follow-up study. Arthroscopy 24:899–908CrossRefPubMedGoogle Scholar
  20. 20.
    Neeter C, Gustavsson A, Thomeé P, Augustsson J, Thomeé R, Karlsson J (2006) Development of a strength test battery for evaluating leg muscle power after anterior cruciate ligament injury and reconstruction. Knee Surg Sports Traumatol Arthrosc 14:571–580CrossRefPubMedGoogle Scholar
  21. 21.
    Noyes FR, Butler DL, Paulos LE, Grood ES (1983) Intra-articular cruciate ligament reconstruction. I: perspectives on graft strength, vascularisation, and immediate motion after replacement. Clin Orthop Relat Res 172:71–77PubMedGoogle Scholar
  22. 22.
    Palmieri-Smith RM, Thomas AC, Wojtys EM (2008) Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med 27:405–424CrossRefPubMedGoogle Scholar
  23. 23.
    Roos EM, Roos HP, Ekdahl C, Lohmander LS (1998) Knee injury and Osteoarthritis Outcome Score (KOOS)—validation of a Swedish version. Scand J Med Sci Sports 8:439–448CrossRefPubMedGoogle Scholar
  24. 24.
    Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)—development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96PubMedGoogle Scholar
  25. 25.
    Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 3:207–213CrossRefGoogle Scholar
  26. 26.
    Stergiou N, Ristanis S, Moraiti C, Georigoulis AD (2007) Tibial rotation in anterior cruciate ligament (ACL)-deficient and ACL-reconstructed knees: a theoretical proposition for the development of osteoarthritis. Sports Med 37:601–613CrossRefPubMedGoogle Scholar
  27. 27.
    Stone MH, Moir G, Glaister M, Sanders R (2002) How much strength is necessary? Phys Ther Sports 3:88–96CrossRefGoogle Scholar
  28. 28.
    Tegner Y, Lysholm J (1985) Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res 198:43–49PubMedGoogle Scholar
  29. 29.
    Werner S (1995) An evaluation of knee extensor and knee flexor torques and EMGs in patients with patellofemoral pain syndrome in comparison with matched controls. Knee Surg Sports Traumatol Arthrosc 3:89–94CrossRefPubMedGoogle Scholar
  30. 30.
    Wroble RR, Van Ginkel LA, Grood ES, Noyes FR, Shaffer BL (1990) Repeatability of the KT-1000 arthrometer in a normal population. Am J Sports Med 18:396–399CrossRefPubMedGoogle Scholar
  31. 31.
    Yunes M, Richmond JC, Engels EA, Pinczewski LA (2001) Patellar versus hamstring tendons in anterior cruciate ligament reconstruction: a meta-analysis. Arthroscopy 17:248–257CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Division of Physiotherapy, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetHuddingeSweden
  2. 2.Department of Molecular Medicine and Surgery, Stockholm Sports Trauma Research CenterKarolinska InstitutetStockholmSweden
  3. 3.Capio Artro ClinicStockholmSweden
  4. 4.SofiahemmetStockholmSweden

Personalised recommendations