Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 18, Issue 8, pp 1059–1064 | Cite as

Comparison of plain radiography, computed tomography, and magnetic resonance imaging in the evaluation of bone tunnel widening after anterior cruciate ligament reconstruction

  • Milford H. MarchantJr.
  • S. Clifton Willimon
  • Emily Vinson
  • Ricardo Pietrobon
  • William E. Garrett
  • Laurence D. Higgins
Knee

Abstract

Bone tunnel widening poses a problem for graft fixation during revision anterior cruciate ligament (ACL) reconstruction. Large variability exists in the utilization of imaging modalities for evaluating bone tunnels in pre-operative planning for revision ACL reconstruction. The purpose of this study was to identify the most reliable imaging modality for identifying bone tunnels and assessing tunnel widening, and specifically, to validate the reliability of radiographs, MRI, and CT using intra- and inter-observer testing. Data was retrospectively collected from twelve patients presenting for revision ACL surgery. Five observers twice measured femoral and tibial tunnels at their widest point using digital calipers in coronal and sagittal planes. Measurements were corrected for magnification. Tunnel identification, diameter measurements, and cross-sectional area (CSA) calculations were recorded. A categorical classification of tunnel measurements was created to apply clinical significance to the measurements. Using kappa statistics, intra- and inter-observer reliability testing was performed. CT demonstrated excellent intra- and inter-observer reliability for tunnel identification. Intra- and inter-observer reliability was significantly less for MRI and radiographs. CT revealed superior reliability versus either radiographs or MRI for CSA analysis. Intra-observer kappa scores for tibial CSA using CT, radiographs, and MRI were 0.66, 0.5, and 0.37, respectively. Inter-observer kappa scores for tibial CSA using CT, radiographs, and MRI were 0.65, 0.39, and 0.32, respectively. Our results demonstrate CT is the most reliable imaging modality for evaluation of ACL bone tunnels as proven by superior intra- and inter-observer testing results when compared to MRI and radiographs. Radiographs and MRI were not reliable, even for simply identifying the presence of a bone tunnel.

Keywords

Anterior cruciate ligament Bone tunnels Revision tunnel enlargement Computed tomography Plain radiograph Magnetic resonance imaging 

References

  1. 1.
    Barber FA, Spruill B, Sheluga M (2003) The effect of outlet fixation on tunnel widening. Arthroscopy 19:485–492CrossRefPubMedGoogle Scholar
  2. 2.
    Brown CH, Carson EW (1999) Revision anterior cruciate ligament surgery. Clin Sports Med 18:109–171CrossRefPubMedGoogle Scholar
  3. 3.
    Buck DC, Simonian PT, Larson RV, Burrow J, Nathanson DA (2004) Timeline of tibial tunnel expansion after single-incision hamstring anterior cruciate ligament reconstruction. Arthroscopy 20:34–36CrossRefPubMedGoogle Scholar
  4. 4.
    Buelow JU, Siebold R, Ellermann A (2002) A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: extracortical versus anatomical fixation. Knee Surg Sports Traumatol Arthrosc 10:80–85CrossRefPubMedGoogle Scholar
  5. 5.
    Clatworthy MG, Annear P, Bulow JU, Bartlett RJ (1999) Tunnel widening in anterior cruciate ligament reconstruction: a prospective evaluation of hamstring and patella tendon grafts. Knee Surg Sports Traumatol Arthrosc 7:138–145CrossRefPubMedGoogle Scholar
  6. 6.
    Fahey M, Indelicato PA (1994) Bone tunnel enlargement after anterior cruciate ligament replacement. Am J Sports Med 22:410–414CrossRefPubMedGoogle Scholar
  7. 7.
    Fink C, Zapp M, Benedetto KP, Wolfgang H, Hoser C, Rieger M (2001) Tibial tunnel enlargement following anterior cruciate ligament reconstruction with patellar tendon autograft. Arthroscopy 17:138–143CrossRefPubMedGoogle Scholar
  8. 8.
    Fules PJ, Madhav RT, Goddard RK, Mowbray MA (2003) Evaluation of tibial bone tunnel enlargement using MRI scan cross-sectional area measurement after autologous hamstring tendon ACL replacement. Knee 10:87–91CrossRefPubMedGoogle Scholar
  9. 9.
    Getelman MH, Friedman MJ (1999) Revision anterior cruciate ligament reconstruction surgery. J Am Acad Orthop Surg 7:189–198PubMedGoogle Scholar
  10. 10.
    Hantes ME, Mastrokalos DS, Yu J, Paessler HH (2004) The effect of early motion on tibial tunnel widening after anterior cruciate replacement using hamstring tendon grafts. Arthroscopy 20:572–580CrossRefPubMedGoogle Scholar
  11. 11.
    Hogervost T, van der Hart CP, Pels Rijcken TH, Taconis WK (2000) Abnormal bone scans of tibial tunnel 2 years after patella ligament anterior cruciate reconstruction: correlation with tunnel enlargement and tibial graft length. Knee Surg Sports Traumatol Arthrosc 8:322–328CrossRefGoogle Scholar
  12. 12.
    Hohner J, Moller HD, Fu FH (1999) Bone Tunnel Enlargement after anterior cruciate ligament reconstruction: fact or fiction? Knee Surg Sports Traumatol Arthrosc 6:231–240Google Scholar
  13. 13.
    Ishibashi Y, Toh S, Okamura Y, Sasaki T, Kusumi S (2001) Graft incorporation within the tibial bone tunnel after anterior cruciate ligament reconstruction with bone-patella tendon-bone autograft. Am J Sports Med 29:473–479PubMedGoogle Scholar
  14. 14.
    Ito MM, Tanaka S (2006) Evaluation of tibial-bone tunnel changes with X-ray and computed tomography after ACL reconstruction using a bone-patella-tendon-bone graft. Int Orthop 30:99–103CrossRefPubMedGoogle Scholar
  15. 15.
    Jackson DW, Windler GE, Simon TM (1990) Intraarticular reaction associated with the use of freeze dried, ethylene oxide-sterilized bone-patella tendon-bone allografts for reconstruction of the anterior cruciate ligament. Am J Sports Med 18:1–11CrossRefPubMedGoogle Scholar
  16. 16.
    Jansson KA, Harilainen A, Sandelin J, Karjalainen PT, Aronen HJ, Tallroth K (1999) Bone tunnel enlargement after anterior cruciate ligament reconstruction with the hamstring autograft and Endobutton fixation technique. A clinical, radiographic and magnetic resonance imaging study with 2 years follow-up. Knee Surg Sports Traumatol Arthrosc 7:290–295CrossRefPubMedGoogle Scholar
  17. 17.
    Landis JR, Koch GG (1999) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefGoogle Scholar
  18. 18.
    Laxdal G, Sernert N, Ejerhed L et al (2007) A prospective comparison of bone-patellar tendon-bone and hamstring tendon grafts for anterior cruciate ligament reconstruction in male patients. Knee Surg Sports Traumatol Arthrosc 15:115–125CrossRefPubMedGoogle Scholar
  19. 19.
    Linn RM, Fischer DA, Smith JP et al (1993) Achilles tendon allograft reconstruction of the anterior cruciate ligament-deficient knee. Am J Sports Med 21:825–831CrossRefPubMedGoogle Scholar
  20. 20.
    L’Insalata JC, Klatt B, Fu FH, Harner CD (1996) Tunnel expansion following anterior cruciate ligament reconstruction: a comparison of hamstring and patellar tendon autografts. Knee Surg Sports Traumatol Arthrosc 5:234–238CrossRefGoogle Scholar
  21. 21.
    Peyrrache MD, Dijan P, Christel P, Witvoet J (1996) Tibial tunnel enlargement after anterior cruciate ligament reconstruction by autogenous bone-patella tendon-bone graft. Knee Surg Sports Traumatol Arthrosc 4:2–8CrossRefGoogle Scholar
  22. 22.
    Roberts TS, Drez D Jr, McCarthy W et al (1991) Anterior cruciate ligament reconstruction using freeze dried, ethylene oxide-sterilized bone-patella tendon-bone allografts. Am J Sports Med 19:35–41CrossRefPubMedGoogle Scholar
  23. 23.
    Schulte K, Majewski M, Irrgang J, Fu FH, Harner CD (1995) Radiographic tunnel changes following arthroscopic ACL reconstruction: autograft versus allograft. Arthroscopy 11:372–373Google Scholar
  24. 24.
    Segawa H, Omori G, Tomita S, Koga Y (2001) Bone tunnel enlargement after anterior cruciate ligament reconstruction using hamstring tendons. Knee Surg Sports Traumatol Arthrosc 9:206–210CrossRefPubMedGoogle Scholar
  25. 25.
    Webster KE, Feller JA, Elliott J, Hutchison A, Payne R (2004) A comparison of bone tunnel measurements using computed tomography and digital plain radiography after anterior cruciate ligament reconstruction. Arthroscopy 20:946–950PubMedGoogle Scholar
  26. 26.
    Wilson TC, Kantaras A, Ahmet A, Johnson DL (2004) Tunnel enlargement after anterior cruciate ligament surgery. Am J Sports Med 32:543–549CrossRefPubMedGoogle Scholar
  27. 27.
    Wright RW, Dunn WR, Amendola A, Andrish JT, Bergfeld J, Kaeding CC, Marx RG, McCarty EC, Parker RD, Wolcott M, Wolf BR, Spindler KP (2007) Risk of tearing the intact anterior cruciate ligament in the contralateral knee and rupturing the anterior cruciate ligament graft during the first 2 years after anterior cruciate ligament reconstruction: a prospective MOON cohort study. Am J Sports Med 35:1131–1134CrossRefPubMedGoogle Scholar
  28. 28.
    Yoshiya S, Nagano M, Kurosaka M, Muratsu H, Mizuno K (2000) Graft healing in the bone tunnel in anterior cruciate ligament reconstruction. Clin Orthop Relat Res 376:278–286CrossRefPubMedGoogle Scholar
  29. 29.
    Zysk SP, Fraunberger R, Veihelmann A, Dorger M, Kalteis T, Maier M, Pellengahr C, Refior HJ (2004) Tunnel enlargement and changes in synovial fluid cytokine profile following anterior cruciate ligament reconstruction with patellar tendon and hamstring autografts. Knee Surg Sports Traumatol Arthrosc 12:98–103CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Milford H. MarchantJr.
    • 1
  • S. Clifton Willimon
    • 1
  • Emily Vinson
    • 2
  • Ricardo Pietrobon
    • 1
  • William E. Garrett
    • 1
  • Laurence D. Higgins
    • 3
  1. 1.Division of Orthopaedic SurgeryDuke University Medical CenterDurhamUSA
  2. 2.Department of RadiologyDuke University Medical CenterDurhamUSA
  3. 3.Sports Medicine and Shoulder Service, Harvard Medical SchoolBrigham and Women’s HospitalBostonUSA

Personalised recommendations