Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 17, Issue 8, pp 968–976 | Cite as

Lower limb muscle activity and kinematics of an unanticipated cutting manoeuvre: a gender comparison

  • Mélanie L. Beaulieu
  • Mario LamontagneEmail author
  • Lanyi Xu
Knee

Abstract

This investigation compared the amplitude and the timing of the muscle activity of the lower limb, as well as the three-dimensional kinematics of the hip, knee and ankle joints, of male and female elite soccer players performing an unanticipated cutting manoeuvre. These data were recorded for 15 female and 15 male participants for five successful cutting manoeuvres. For this manoeuvre to be performed in an unanticipated manner, the participants were instructed to execute one of three tasks, which were signalled to them with a target board composed of three different coloured lights. Female participants performed the cutting manoeuvre with greater lateral gastrocnemius activity in comparison with the male participants. It was also observed that they contracted their vastus lateralis to a greater extent than their vastus medialis, whereas the men adopted the opposite strategy. These neuromuscular control strategies adopted by the female athletes may elucidate the reasons for which women struck the ground with a more abducted knee during the cutting task. Given that this knee position places greater strain on the anterior cruciate ligament, a restoration of the medial/lateral activation balance of the lower limb muscles may reduce one’s risk of injury.

Keywords

Knee joint Anterior cruciate ligament Biomechanics Electromyography Kinematics Gender 

Notes

Acknowledgments

This research was supported, in part, by the Natural Science and Engineering Research Council of Canada (Grant Ref No: 106769-2006).

References

  1. 1.
    Andriacchi TP, Andersson GB, Ortengren R, Mikosz RP (1984) A study of factors influencing muscle activity about the knee joint. J Orthop Res 1:266–275. doi: 10.1002/jor.1100010306 PubMedCrossRefGoogle Scholar
  2. 2.
    Arendt EA, Agel J, Dick R (1999) Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train 34:86–92PubMedGoogle Scholar
  3. 3.
    Beaulieu ML, Lamontagne M, Xu L (2008) Gender differences in time-frequency EMG analysis of unanticipated cutting maneuvers. Med Sci Sports Exerc 40:1795–1804. doi: 10.1249/MSS.0b013e31817b8e9e PubMedCrossRefGoogle Scholar
  4. 4.
    Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renstrom P (2006) Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164. doi: 10.1016/j.gaitpost.2005.04.012 PubMedCrossRefGoogle Scholar
  5. 5.
    Besier TF, Lloyd DG, Ackland TR (2003) Muscle activation strategies at the knee during running and cutting maneuvers. Med Sci Sports Exerc 35:119–127. doi: 10.1097/00005768-200301000-00019 PubMedCrossRefGoogle Scholar
  6. 6.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573–578PubMedGoogle Scholar
  7. 7.
    Bonato P, D’Alessio T, Knaflitz M (1998) A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait. IEEE Trans Biomed Eng 45:287–299. doi: 10.1109/10.661154 PubMedCrossRefGoogle Scholar
  8. 8.
    Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE (2007) Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med 35:235–241. doi: 10.1177/0363546506294077 PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  10. 10.
    De Luca CJ (1997) The use of surface electromyography in biomechanics. J Appl Biomech 13:135–163Google Scholar
  11. 11.
    Fleming BC, Renstrom PA, Ohlen G, Johnson RJ, Peura GD, Beynnon BD, Badger GJ (2001) The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. J Orthop Res 19:1178–1184. doi: 10.1016/S0736-0266(01)00057-2 PubMedCrossRefGoogle Scholar
  12. 12.
    Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE (2006) A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech (Bristol, Avon) 21:33–40. doi: 10.1016/j.clinbiomech.2005.08.010 CrossRefGoogle Scholar
  13. 13.
    Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med 33:492–501. doi: 10.1177/0363546504269591 PubMedCrossRefGoogle Scholar
  14. 14.
    Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24:765–773. doi: 10.1177/036354659602400611 PubMedCrossRefGoogle Scholar
  15. 15.
    Joseph M, Tiberio D, Baird JL, Trojian TH, Anderson JM, Kraemer WJ, Maresh CM (2008) Knee valgus during drop jumps in National Collegiate Athletic Association Division I female athletes: the effect of a medial post. Am J Sports Med 36:285–289. doi: 10.1177/0363546507308362 PubMedCrossRefGoogle Scholar
  16. 16.
    Koh TJ, Herzog W (1995) Evaluation of voluntary and elicited dorsiflexor torque-angle relationships. J Appl Physiol 79:2007–2013PubMedGoogle Scholar
  17. 17.
    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35:359–367. doi: 10.1177/0363546506293899 PubMedCrossRefGoogle Scholar
  18. 18.
    Landry SC, McKean KA, Hubley-Kozey CL, Stanish WD, Deluzio KJ (2007) Neuromuscular and lower limb biomechanical differences exist between male and female elite adolescent soccer players during an unanticipated side-cut maneuver. Am J Sports Med 35:1888–1900. doi: 10.1177/0363546507300823 PubMedCrossRefGoogle Scholar
  19. 19.
    Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 32:395–400. doi: 10.1016/S0021-9290(98)00181-X PubMedCrossRefGoogle Scholar
  20. 20.
    Lloyd DG, Buchanan TS (2001) Strategies of muscular support of varus and valgus isometric loads at the human knee. J Biomech 34:1257–1267. doi: 10.1016/S0021-9290(01)00095-1 PubMedCrossRefGoogle Scholar
  21. 21.
    Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50:3145–3152. doi: 10.1002/art.20589 PubMedCrossRefGoogle Scholar
  22. 22.
    Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE (2001) A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech (Bristol, Avon) 16:438–445. doi: 10.1016/S0268-0033(01)00019-5 CrossRefGoogle Scholar
  23. 23.
    McLean SG, Huang X, Su A, van den Bogert AJ (2004) Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech (Bristol, Avon) 19:828–838. doi: 10.1016/j.clinbiomech.2004.06.006 CrossRefGoogle Scholar
  24. 24.
    McLean SG, Huang X, van den Bogert AJ (2008) Investigating isolated neuromuscular control contributions to non-contact anterior cruciate ligament injury risk via computer simulation methods. Clin Biomech (Bristol, Avon) 23:926–936. doi: 10.1016/j.clinbiomech.2008.03.072 CrossRefGoogle Scholar
  25. 25.
    McLean SG, Lipfert SW, van den Bogert AJ (2004) Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med Sci Sports Exerc 36:1008–1016. doi: 10.1249/01.MSS.0000128180.51443.83 PubMedCrossRefGoogle Scholar
  26. 26.
    Mihata LC, Beutler AI, Boden BP (2006) Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: implications for anterior cruciate ligament mechanism and prevention. Am J Sports Med 34:899–904. doi: 10.1177/0363546505285582 PubMedCrossRefGoogle Scholar
  27. 27.
    Myklebust G, Engebretsen L, Braekken IH, Skjolberg A, Olsen OE, Bahr R (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med 13:71–78. doi: 10.1097/00042752-200303000-00002 PubMedCrossRefGoogle Scholar
  28. 28.
    Neptune RR, Wright IC, van den Bogert AJ (1999) Muscle coordination and function during cutting movements. Med Sci Sports Exerc 31:294–302. doi: 10.1097/00005768-199902000-00014 PubMedCrossRefGoogle Scholar
  29. 29.
    O’Connor JJ (1993) Can muscle co-contraction protect knee ligaments after injury or repair? J Bone Joint Surg Br 75:41–48PubMedGoogle Scholar
  30. 30.
    Pollard CD, Davis IM, Hamill J (2004) Influence of gender on hip and knee mechanics during a randomly cued cutting maneuver. Clin Biomech (Bristol, Avon) 19:1022–1031. doi: 10.1016/j.clinbiomech.2004.07.007 CrossRefGoogle Scholar
  31. 31.
    Sale D, Quinlan J, Marsh E, McComas AJ, Belanger AY (1982) Influence of joint position on ankle plantarflexion in humans. J Appl Physiol 52:1636–1642PubMedGoogle Scholar
  32. 32.
    Shultz SJ (2008) ACL injury in the female athlete: a multifactorial problem that remains poorly understood. J Athl Train 43:455PubMedCrossRefGoogle Scholar
  33. 33.
    Sigward SM, Powers CM (2006) The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin Biomech (Bristol, Avon) 21:41–48. doi: 10.1016/j.clinbiomech.2005.08.001 CrossRefGoogle Scholar
  34. 34.
    Slauterbeck JR, Fuzie SF, Smith MP, Clark RJ, Xu K, Starch DW, Hardy DM (2002) The menstrual cycle, sex hormones, and anterior cruciate ligament injury. J Athl Train 37:275–278PubMedGoogle Scholar
  35. 35.
    Smith TO, Hunt NJ, Donell ST (2008) The reliability and validity of the Q-angle: a systematic review. Knee Surg Sports Traumatol Arthrosc 16:1068–1079. doi: 10.1007/s00167-008-0643-6 PubMedCrossRefGoogle Scholar
  36. 36.
    Tillman MD, Bauer JA, Cauraugh JH, Trimble MH (2005) Differences in lower extremity alignment between males and females. Potential predisposing factors for knee injury. J Sports Med Phys Fitness 45:355–359PubMedGoogle Scholar
  37. 37.
    Wojtys EM, Huston LJ, Boynton MD, Spindler KP, Lindenfeld TN (2002) The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels. Am J Sports Med 30:182–188PubMedGoogle Scholar
  38. 38.
    Woltring HJ (1986) A Fortran package for generalized, cross-validatory spline smoothing and differentiation. Adv Eng Softw 8:104–107. doi: 10.1016/0141-1195(86)90098-7 Google Scholar
  39. 39.
    Wretenberg P, Nemeth G, Lamontagne M, Lundin B (1996) Passive knee muscle moment arms measured in vivo with MRI. Clin Biomech (Bristol, Avon) 11:439–446. doi: 10.1016/S0268-0033(96)00030-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mélanie L. Beaulieu
    • 1
  • Mario Lamontagne
    • 1
    • 2
    Email author
  • Lanyi Xu
    • 3
  1. 1.School of Human Kinetics, Faculty of Health SciencesUniversity of OttawaOttawaCanada
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringUniversity of OttawaOttawaCanada
  3. 3.Device Surveillance Division, Medical Device BureauHealth CanadaOttawaCanada

Personalised recommendations