Advertisement

Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 17, Issue 8, pp 920–926 | Cite as

Reliability testing of a new device to measure tibial rotation

  • Olaf LorbachEmail author
  • P. Wilmes
  • D. Theisen
  • M. Brockmeyer
  • S. Maas
  • D. Kohn
  • R. Seil
Knee

Abstract

The purpose of this study was to evaluate the reliability of a new developed device to measure tibial rotation, the Rotameter. Thirty healthy subjects (15 males, 15 females, 24 years) were examined with the Rotameter measurement device. External and internal rotation was performed at an applied torque of 5, 10 and 15 Nm by two independent examiners in order to test the inter-observer reliability. The patients were measured again after a mean of 31 ± 43 days by the same examiners to test the intra-observer reliability. Statistical analysis was performed using the intra-class correlation coefficient. The Pearson Correlation coefficient was used to compare the measurements of the left with the right side of the participants. In the measurements, a high inter- and intra-observer reliability was found at 5, 10 and 15 Nm of applied torque for the external rotation, internal rotation and the rotational range (internal + external rotation). Comparison of the left and the right knee of the same participant also revealed high correlations in the Pearson correlation coefficient at all applied torques. In conclusion, the Rotameter testing device for the measurement of tibial rotation showed a high inter-observer and intra-observer reliability. It is easy to perform and might be used in a wide field as a non-invasive instrument to objectively determine rotational stability and to investigate the restoration of the rotational stability after surgical procedures.

Keywords

Rotational stability Measurement device Knee laxity ACL Tibial rotation 

Notes

Acknowledgments

The authors like to thank all test persons who participated in the study and Dr. Thomas Georg for the statistical support.

Conflict of interest statement

No potential conflicts of interests are declared.

References

  1. 1.
    Almquist PO, Arnbjornsson A, Zatterstrom R, Ryd L, Ekdahl C, Friden T (2002) Evaluation of an external device measuring knee joint rotation: an in vivo study with simultaneous Roentgen stereometric analysis. J Orthop Res 20:427–432PubMedCrossRefGoogle Scholar
  2. 2.
    Andriacchi TP, Dyrby CO (2005) Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 38:293–298PubMedCrossRefGoogle Scholar
  3. 3.
    Beighton P, Solomon L, Soskolne CL (1973) Articular mobility in an African population. Ann Rheum Dis 32:413–418PubMedCrossRefGoogle Scholar
  4. 4.
    Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renstrom P (2006) Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164PubMedCrossRefGoogle Scholar
  5. 5.
    Bull AM, Earnshaw PH, Smith A, Katchburian MV, Hassan AN, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84:1075–1081PubMedCrossRefGoogle Scholar
  6. 6.
    Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65PubMedCrossRefGoogle Scholar
  7. 7.
    Czerniecki JM, Lippert F, Olerud JE (1988) A biomechanical evaluation of tibiofemoral rotation in anterior cruciate deficient knees during walking and running. Am J Sports Med 16:327–331PubMedCrossRefGoogle Scholar
  8. 8.
    Daniel DM, Malcom LL, Losse G, Stone ML, Sachs R, Burks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am 67:720–726PubMedGoogle Scholar
  9. 9.
    Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31:75–79PubMedGoogle Scholar
  10. 10.
    Georgoulis AD, Ristanis S, Chouliaras V, Moraiti C, Stergiou N (2007) Tibial rotation is not restored after ACL reconstruction with a hamstring graft. Clin Orthop Relat Res 454:89–94PubMedCrossRefGoogle Scholar
  11. 11.
    Järvelä T (2007) Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study. Knee Surg Sports Traumatol Arthrosc 15:500–507PubMedCrossRefGoogle Scholar
  12. 12.
    Kubo S, Muratsu H, Yoshiya S, Mizuno K, Kurosaka M (2007) Reliability and usefulness of a new in vivo measurement system of the pivot shift. Clin Orthop Relat Res 454:54–58PubMedCrossRefGoogle Scholar
  13. 13.
    Kurosawa H, Yamakoshi K, Yasuda K, Sasaki T (1991) Simultaneous measurement of changes in length of the cruciate ligaments during knee motion. Clin Orthop Relat Res 265:233–240PubMedGoogle Scholar
  14. 14.
    Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD (2008) In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 16:487–492PubMedCrossRefGoogle Scholar
  15. 15.
    Lane JG, Irby SE, Kaufman K, Rangger C, Daniel DM (1994) The anterior cruciate ligament in controlling axial rotation. An evaluation of its effect. Am J Sports Med 22:289–293PubMedCrossRefGoogle Scholar
  16. 16.
    Leardini A, Chiari L, Della CU, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225PubMedCrossRefGoogle Scholar
  17. 17.
    Markolf KL, Graff-Radford A, Amstutz HC (1978) In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am 60:664–674PubMedGoogle Scholar
  18. 18.
    Martelli S, Zaffagnini S, Bignozzi S, Bontempi M, Marcacci M (2006) Validation of a new protocol for computer-assisted evaluation of kinematics of double-bundle ACL reconstruction. Clin Biomech (Bristol, Avon) 21:279–287CrossRefGoogle Scholar
  19. 19.
    Muneta T, Koga H, Mochizuki T, Ju YJ, Hara K, Nimura A, Yagishita K, Sekiya I (2007) A prospective randomized study of 4-strand semitendinosus tendon anterior cruciate ligament reconstruction comparing single-bundle and double-bundle techniques. Arthroscopy 23:618–628PubMedCrossRefGoogle Scholar
  20. 20.
    Musahl V, Bell KM, Tsai AG, Costic RS, Allaire R, Zantop T, Irrgang JJ, Fu FH (2007) Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc 15:1009–1012PubMedCrossRefGoogle Scholar
  21. 21.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19:148–155PubMedCrossRefGoogle Scholar
  22. 22.
    Okazaki K, Miura H, Matsuda S, Yasunaga T, Nakashima H, Konishi K, Iwamoto Y, Hashizume M (2007) Assessment of anterolateral rotatory instability in the anterior cruciate ligament-deficient knee using an open magnetic resonance imaging system. Am J Sports Med 35:1091–1097PubMedCrossRefGoogle Scholar
  23. 23.
    Schuster AJ, McNicholas MJ, Wachtl SW, McGurty DW, Jakob RP (2004) A new mechanical testing device for measuring anteroposterior knee laxity. Am J Sports Med 32:1731–1735PubMedCrossRefGoogle Scholar
  24. 24.
    Selvik G (1989) Roentgen stereophotogrammetry. A method for the study of the kinematics of the skeletal system. Acta Orthop Scand Suppl 232:1–51PubMedGoogle Scholar
  25. 25.
    Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo–Part I: assessment of measurement reliability and bilateral asymmetry. J Orthop Res 25:981–988PubMedCrossRefGoogle Scholar
  26. 26.
    Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ, Fu FH (2008) Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord 9:35PubMedCrossRefGoogle Scholar
  27. 27.
    Woo SL, Kanamori A, Zeminski J, Yagi M, Papageorgiou C, Fu FH (2002) The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am 84-A:907–914PubMedGoogle Scholar
  28. 28.
    Yagi M, Kuroda R, Nagamune K, Yoshiya S, Kurosaka M (2007) Double-bundle ACL reconstruction can improve rotational stability. Clin Orthop Relat Res 454:100–107PubMedCrossRefGoogle Scholar
  29. 29.
    Zaffagnini S, Bignozzi S, Martelli S, Imakiire N, Lopomo N, Marcacci M (2006) New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results. Knee Surg Sports Traumatol Arthrosc 14:811–816PubMedCrossRefGoogle Scholar
  30. 30.
    Zarins B, Rowe CR, Harris BA, Watkins MP (1983) Rotational motion of the knee. Am J Sports Med 11:152–156PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Olaf Lorbach
    • 1
    • 2
    Email author
  • P. Wilmes
    • 1
    • 2
  • D. Theisen
    • 4
  • M. Brockmeyer
    • 1
  • S. Maas
    • 3
  • D. Kohn
    • 1
  • R. Seil
    • 2
  1. 1.Department of Orthopedic SurgerySaarland UniversityHomburg/SaarGermany
  2. 2.Service de Chirurgie Orthopédique et Traumatologique, Centre d’Orthopédie et de Médecine du SportCentre Hospitalier, Clinique d’EichLuxembourgLuxembourg
  3. 3.Unité ‘Ingénierie’, de la Technologie et de la Communication, Faculté des SciencesUniversité du LuxembourgLuxembourgLuxembourg
  4. 4.CRP-SantéCellule de Sport et de SantéLuxembourgLuxembourg

Personalised recommendations