Advertisement

Elongation of simulated whipstitch post anterior cruciate ligament reconstruction tibial fixation after cyclic loading

  • 250 Accesses

  • 6 Citations

Abstract

Whipstitch-post (WSP) tibial fixation is one of the most widely used and clinically successful methods of soft tissue graft fixation for anterior cruciate ligament reconstruction (ACLR). However, some consider the method prone to laxity. We hypothesized that WSP would have low elongation rates after experimental cyclic loading. Eight cadaveric human semitendinosus and gracilis (ST/Gr) tendons had whipstitches woven into their overlapped ends. The grafts were looped around a metal bar, pneumatically clamped, and cyclically loaded. The adjusted mean experimental graft elongation for the WSP was 1.13 mm with a maximum elongation of 1.64 mm and a standard deviation of 0.32. These values are equivalent to the lowest published cyclic loading tibial fixation elongation data. Whipstitch-post tibial ACLR fixation is biomechanically sound with among the lowest rates of elongation after laboratory cyclic loading.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Bartz RL, Mossoni K, Tyber J et al (2007) A biomechanical comparison of initial fixation strength of 3 different methods of anterior cruciate ligament soft tissue graft tibial fixation: resistance to monotonic and cyclic loading. Am J Sports Med 35:949–954

  2. 2.

    Brown CH Jr, Darwich N (2007) Intratunnel tibial fixation of soft tissue anterior cruciate ligament grafts: graft sleeve and tapered screw. In: Prodromos CC (ed) The anterior cruciate ligament: reconstruction and basic science. Elsevier, Philadelphia, pp 330–340

  3. 3.

    Coleridge SD, Amis AA (2004) A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:391–397

  4. 4.

    Cooley VJ, Deffner KT, Rosenberg TD (2001) Quadrupled semitendinosus anterior cruciate ligament reconstruction: 5-year results in patients without meniscus loss. Arthroscopy 17:795–800

  5. 5.

    Ferretti A, Conteduca F, Labianca L et al (2005) Evolgate fixation of doubled flexor graft in anterior cruciate ligament reconstruction: biomechanical evaluation with cyclic loading. Am J Sports Med 33:574–582

  6. 6.

    Giurea M, Zorilla P, Amis AA et al (1999) Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med 27:621–625

  7. 7.

    Gobbi A, Tuy B, Mahajan S et al (2003) Quadrupled bone-semitendinosus anterior cruciate ligament reconstruction: a clinical investigation in a group of athletes. Arthroscopy 19:691–699

  8. 8.

    Harvey AR, Thomas NP, Amis AA (2003) The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee 10:97–102

  9. 9.

    Höher J, Scheffler SU, Withrow JD et al (2000) Mechanical behavior of two hamstring graft constructs for reconstruction of the anterior cruciate ligament. J Orthop Res 18:456–461

  10. 10.

    Kousa P, Järvinen TL, Vihavainen M et al (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction part ii: tibial site. Am J Sports Med 31:182–188

  11. 11.

    Krappinger D, Kralinger FS, El Attal R et al (2007) Modified prusik knot versus whistitch technique for soft tissue fixation in anterior cruciate ligament reconstruction: a biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 15:418–423

  12. 12.

    Liu-Barba D, Howell SM, Hull ML (2007) High-stiffness distal fixation restores anterior laxity and stiffness as well as joint line fixation with an interference screw. Am J Sports Med 35:2073–2082

  13. 13.

    Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27:35–43

  14. 14.

    Markolf KL, Gorek JF, Kabo JM et al (1990) Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am 72:557–567

  15. 15.

    Milano G, Mulas PD, Sanna-Passino E et al (2005) Evaluation of bone plug and soft tissue anterior cruciate ligament graft fixation over time using transverse femoral fixation in a sheep model. Arthroscopy 21:532–539

  16. 16.

    Namkoong S, Heywood CS, Bravman JT et al (2006) The effect of interference screw diameter on soft tissue graft fixation. Bull Hosp Jt Dis 63:153–155

  17. 17.

    Nurmi JT, Järvinen TL, Kannus P et al (2002) Compaction versus extraction drilling for fixation of the hamstring tendon graft in anterior cruciate ligament reconstruction. Am J Sports Med 30:167–173

  18. 18.

    Nurmi JT, Kannus P, Sievänen H et al (2003) Compaction drilling does not increase the initial fixation strength of the hamstring tendon graft in anterior cruciate ligament reconstruction in a cadaver model. Am J Sports Med 31:353–358

  19. 19.

    Nurmi JT, Sievänen H, Kannus P et al (2004) Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 32:765–771

  20. 20.

    Prodromos CC, Han YS, Keller BL et al (2005) Stability results of hamstring anterior cruciate ligament reconstruction at 2- to 8-year follow-up. Arthroscopy 21:138–146

  21. 21.

    Prodromos CC, Joyce BT, Shi K et al (2005) A meta-analysis of stability after anterior cruciate ligament reconstruction as a function of hamstring versus patellar-tendon graft and fixation type. Arthroscopy 21:1202–1208

  22. 22.

    Scranton PE Jr, Bagenstose JE, Lantz BA et al (2002) Quadruple hamstring anterior cruciate ligament reconstruction: a multicenter study. Arthroscopy 18:715–724

  23. 23.

    Shelburne KB, Pandy MG (1998) Determinants of cruciate-ligament loading during rehabilitation exercise. Clin Biomech (Bristol, Avon) 13:403–413

  24. 24.

    To JT, Howell SM, Hull ML (1999) Contributions of femoral fixation methods to the stiffness of anterior cruciate ligament replacements at implantation. Arthroscopy 15:379–387

  25. 25.

    Weimann A, Rodieck M, Zantop T et al (2005) Primary stability of hamstring graft fixation with biodegradable suspension versus interference screws. Arthroscopy 21:266–274

  26. 26.

    Wüst DM, Meyer DC, Favre P et al (2006) Mechanical and handling properties of braided polyblend polyethylene sutures in comparison to braided polyester and monofilament polydioxanone sutures. Arthroscopy 22:1146–1153

  27. 27.

    Yasuda K, Kondo E, Ichiyama H et al (2004) Anatomic reconstruction of the anteromedial and posterolateral bundles of the anterior cruciate ligament using hamstring tendon grafts. Arthroscopy 20:1015–1025

Download references

Author information

Correspondence to Chadwick C. Prodromos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (mpg 91.4 MB)

Supplementary material (mpg 91.4 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prodromos, C.C., Hecker, A., Joyce, B. et al. Elongation of simulated whipstitch post anterior cruciate ligament reconstruction tibial fixation after cyclic loading. Knee Surg Sports Traumatol Arthrosc 17, 914–919 (2009). https://doi.org/10.1007/s00167-009-0761-9

Download citation

Keywords

  • Anterior cruciate ligament
  • Hamstring
  • Knee
  • Fixation
  • Cadaver
  • Stability