Skip to main content

Advertisement

Log in

The immediate effect of navigation on implant accuracy in primary mini-invasive unicompartmental knee arthroplasty

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

The success of unicompartmental knee arthroplasty (UKA) is highly dependent on the accuracy of the component alignment. Objective of the present study was to evaluate the immediate effect of image-free computer navigation technology on implant accuracy in primary mini-invasive UKA. This study reviews 40 patients with primary isolated arthritis of the medial compartment of the knee that underwent unicompartmental knee arthroplasty through a minimally invasive approach. A cohort of the 20 most recent consecutive UKA’s implanted with standard instrumentation was followed by a cohort of the very first 20 consecutive cases after conversion to the navigated technique. There was no variability regarding implant (Oxford™ meniscal unicompartmental knee system—Biomet Orthopedics, Inc., Warsaw, Indiana 46580, USA), surgeons and surgical technique, except for the use of the navigation system (Treon plus™—Medtronic Inc., Minnesota, MI, USA). The axis alignment and accuracy of implant positioning was measured on postoperative long-leg standing radiographs and standard lateral X-rays with regard to the valgus angle and the coronal and sagittal component angle. In addition, preoperative deformities of the mechanical leg axis, tourniquet time, age, gender, and body mass index were correlated. Statistical analyses were performed using the SPSS 14.0 (SPSS Inc., Chicago, IL, USA) software package. Optimal implant alignment including all measurements in the desired angular range was significantly (P = 0.041) higher in the navigated cohort. Navigation eliminated outliers in the frontal mechanical alignment and coronal orientation of the femoral component totally and significantly (P < 0.02). Furthermore, navigation narrowed the range of outliers in all other planes of component orientation. There were no statistically significant differences in the mean numerical values between the cohorts, except for the frontal mechanical alignment (P < 0.009) and coronal tibial alignment (P < 0.037). The average tourniquet time was increased by 10.95 min in the navigated cohort. Our results indicate that navigation immediately improves accuracy of bone cuts and reduces the number of outliers with implementation in UKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kort NP, van Raay JJ, van Horn JJ (2007) The Oxford phase III unicompartmental knee replacement in patients less than 60 years of age. Knee Surg Sports Traumatol Arthrosc 15(4):356–360

    Article  PubMed  Google Scholar 

  2. Tabor OB Jr, Tabor OB (1998) Unicompartmental arthroplasty: a long-term follow-up study. J Arthroplasty 13(4):373–379

    Article  PubMed  Google Scholar 

  3. Thornhill TS (1986) Unicompartmental knee arthroplasty. Clin Orthop Relat Res 205:121–131

    PubMed  Google Scholar 

  4. Sanchis-Alfonso V (2007) Severe metallosis after unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 15(4):361–364

    Article  PubMed  Google Scholar 

  5. Murray DW, Goodfellow JW, O’Connor JJ (1998) The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br 80(6):983–989

    Article  PubMed  CAS  Google Scholar 

  6. Scott RD (2006) Three decades of experience with unicompartmental knee arthroplasty: mistakes made and lessons learned. Orthopedics 29(9):829–831

    PubMed  Google Scholar 

  7. Sanchis-Alfonso V, Alcacer-Garcia J (2001) Extensive osteolytic cystlike area associated with polyethylene wear debris adjacent to an aseptic, stable, uncemented unicompartmental knee prosthesis: case report. Knee Surg Sports Traumatol Arthrosc 9(3):173–177

    Article  PubMed  CAS  Google Scholar 

  8. Lindstrand A, Stenstrom A (1992) Polyethylene wear of the PCA unicompartmental knee. Prospective 5 (4–8) year study of 120 arthrosis knees. Acta Orthop Scand 63(3):260–262

    Article  PubMed  CAS  Google Scholar 

  9. Argenson JN, Parratte S (2006) The unicompartmental knee: design and technical considerations in minimizing wear. Clin Orthop Relat Res 452:137–142

    Article  PubMed  Google Scholar 

  10. Berger R et al (2006) The progression of patellofemoral arthrosis after medial unicompartmental replacement: results at 11 to 15 years. Clin Orthop Relat Res 452:285–286

    Article  PubMed  Google Scholar 

  11. McAuley JP, Engh GA, Ammeen DJ (2001) Revision of failed unicompartmental knee arthroplasty. Clin Orthop Relat Res 392:279–282

    Article  PubMed  Google Scholar 

  12. Palmer SH, Morrison PJ, Ross AC (1998) Early catastrophic tibial component wear after unicompartmental knee arthroplasty. Clin Orthop Relat Res 350:143–148

    Article  PubMed  Google Scholar 

  13. Scott RD (2003) UniSpacer: insufficient data to support its widespread use. Clin Orthop Relat Res 416:164–166

    Article  PubMed  Google Scholar 

  14. Hallock RH (2003) The UniSpacer knee system: have we been there before? Orthopedics 26(9):953–954

    PubMed  Google Scholar 

  15. Minas T (2001) Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res 391(Suppl):S349–S361

    Google Scholar 

  16. Barnes CL et al (2006) Treatment of medial compartment arthritis of the knee: a survey of the American Association of Hip and Knee Surgeons. J Arthroplasty 21(7):950–956

    Article  PubMed  Google Scholar 

  17. Bert JM (1998) 10-year survivorship of metal-backed, unicompartmental arthroplasty. J Arthroplasty 13(8):901–905

    Article  PubMed  CAS  Google Scholar 

  18. Cartier P, Sanouiller JL, Grelsamer RP (1996) Unicompartmental knee arthroplasty surgery. 10-year minimum follow-up period. J Arthroplasty 11(7):782–788

    Article  PubMed  CAS  Google Scholar 

  19. Reed SC, Gollish J (1997) The accuracy of femoral intramedullary guides in total knee arthroplasty. J Arthroplasty 12(6):677–682

    Article  PubMed  CAS  Google Scholar 

  20. Simmons ED Jr et al (1991) The accuracy of tibial intramedullary alignment devices in total knee arthroplasty. J Arthroplasty 6(1):45–50

    Article  PubMed  Google Scholar 

  21. Dennis DA et al (1993) Intramedullary versus extramedullary tibial alignment systems in total knee arthroplasty. J Arthroplasty 8(1):43–47

    Article  PubMed  CAS  Google Scholar 

  22. Maestro A et al (1998) Influence of intramedullary versus extramedullary alignment guides on final total knee arthroplasty component position: a radiographic analysis. J Arthroplasty 13(5):552–558

    Article  PubMed  CAS  Google Scholar 

  23. Teter KE, Bregman D, Colwell CW Jr (1995) The efficacy of intramedullary femoral alignment in total knee replacement. Clin Orthop Relat Res 321:117–121

    PubMed  Google Scholar 

  24. Ritter MA et al (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156

    Google Scholar 

  25. Jenny JY, Boeri C (2003) Unicompartmental knee prosthesis implantation with a non-image-based navigation system: rationale, technique, case-control comparative study with a conventional instrumented implantation. Knee Surg Sports Traumatol Arthrosc 11(1):40–45

    PubMed  Google Scholar 

  26. Delp SL et al (1998) Computer assisted knee replacement. Clin Orthop Relat Res 354:49–56

    Article  PubMed  Google Scholar 

  27. Sparmann M et al (2003) Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br 85(6):830–835

    PubMed  CAS  Google Scholar 

  28. Romanowski MR, Repicci JA (2002) Minimally invasive unicondylar arthroplasty: eight-year follow-up. J Knee Surg 15(1):17–22

    PubMed  Google Scholar 

  29. Hamilton WG et al (2006) Incidence and reasons for reoperation after minimally invasive unicompartmental knee arthroplasty. J Arthroplasty 21(6 Suppl 2):98–107

    Article  PubMed  Google Scholar 

  30. Haaker RG et al (2006) Minimally invasive unicondylar knee replacement with computer navigation. Orthopade 35(10):1073–1079

    Article  PubMed  CAS  Google Scholar 

  31. Statistical package for the social sciences. Version 15.0 Chicago, IL: SPSS Inc

  32. Petersen TL, Engh GA (1988) Radiographic assessment of knee alignment after total knee arthroplasty. J Arthroplasty 3(1):67–72

    Article  PubMed  CAS  Google Scholar 

  33. Bach CM et al (2001) Radiographic assessment in total knee arthroplasty. Clin Orthop Relat Res 385:144–150

    Article  PubMed  Google Scholar 

  34. Krackow KA, Pepe CL, Galloway EJ (1990) A mathematical analysis of the effect of flexion and rotation on apparent varus/valgus alignment at the knee. Orthopedics 13(8):861–868

    PubMed  CAS  Google Scholar 

  35. Swanson KE et al (2000) Does axial limb rotation affect the alignment measurements in deformed limbs? Clin Orthop Relat Res 371:246–252

    Article  PubMed  Google Scholar 

  36. Skolnick MD, Bryan RS, Peterson LF (1975) Unicompartmental polycentric knee arthroplasty: description and preliminary results. Clin Orthop Relat Res 112:208–214

    Article  PubMed  Google Scholar 

  37. Goodfellow JW, O’Connor JJ, Shrive NG (1974) British Patent Application No. 49794/74

  38. Berry DJ (2004) Computer-assisted knee arthroplasty is better than a conventional jig-based technique in terms of component alignment. J Bone Joint Surg Am 86-A(11):2573

    PubMed  Google Scholar 

  39. Bathis H et al (2004) Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone Joint Surg Br 86(5):682–687

    Article  PubMed  CAS  Google Scholar 

  40. Chauhan SK et al (2004) Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomised, prospective trial. J Bone Joint Surg Br 86(3):372–377

    Article  PubMed  CAS  Google Scholar 

  41. Bonutti PM et al (2004) Minimally invasive total knee arthroplasty. J Bone Joint Surg Am 86-A(Suppl 2):26–32

    PubMed  Google Scholar 

  42. Kolettis GT et al (1994) Safety of 1-stage bilateral total knee arthroplasty. Clin Orthop Relat Res 309:102–109

    PubMed  Google Scholar 

  43. Caillouette JT, Anzel SH (1990) Fat embolism syndrome following the intramedullary alignment guide in total knee arthroplasty. Clin Orthop Relat Res 251:198–199

    PubMed  Google Scholar 

  44. Kalairajah Y et al (2006) Are systemic emboli reduced in computer-assisted knee surgery? A prospective, randomised, clinical trial. J Bone Joint Surg Br 88(2):198–202

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Christian Dallapozza, MD from the Dept. of Trauma Surgery and Sports Medicine, Innsbruck Medical School, Austria for assistance in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf E. Rosenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberger, R.E., Fink, C., Quirbach, S. et al. The immediate effect of navigation on implant accuracy in primary mini-invasive unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthr 16, 1133–1140 (2008). https://doi.org/10.1007/s00167-008-0618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-008-0618-7

Keywords

Navigation