Knee Surgery, Sports Traumatology, Arthroscopy

, Volume 16, Issue 9, pp 834–842 | Cite as

Graft remodeling and ligamentization after cruciate ligament reconstruction

Knee

Abstract

After reconstruction of the cruciate ligaments, replacement grafts have to undergo several phases of healing in the intra-articular graft region and at the site of graft-to-bone incorporation. The changes in the biological and mechanical properties of the healing graft in its intra-articular region are described as the ligamentization process. Significant knowledge has been added in the understanding of the several processes during the course of graft healing and is summarized in this article. The understanding of the spatial and time-dependent changes as well as the differences between the different models of graft healing are of significant importance to develop strategies of improved treatment options in cruciate ligament surgery, so that full restoration of function and mechanical strength of the intact cruciate ligaments will be achieved.

Keywords

Cruciate ligaments Graft remodeling Ligamentization 

References

  1. 1.
    Abe S et al (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9(4):394–405PubMedGoogle Scholar
  2. 2.
    Amiel D et al (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1(3):257–265PubMedCrossRefGoogle Scholar
  3. 3.
    Amiel D et al (1986) The phenomenon of “ligamentization”: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res 4(2):162–172PubMedCrossRefGoogle Scholar
  4. 4.
    Arnoczky SP, Tarvin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. An evaluation of graft revascularization in the dog. J Bone Joint Surg Am 64(2):217–224PubMedGoogle Scholar
  5. 5.
    Ballock RT et al (1989) Use of patellar tendon autograft for anterior cruciate ligament reconstruction in the rabbit: a long-term histologic and biomechanical study. J Orthop Res 7(4):474–485PubMedCrossRefGoogle Scholar
  6. 6.
    Blickenstaff KR, Grana WA, Egle D (1997) Analysis of a semitendinosus autograft in a rabbit model. Am J Sports Med 25(4):554–559PubMedCrossRefGoogle Scholar
  7. 7.
    Bosch U, Kasperczyk WJ (1992) Healing of the patellar tendon autograft after posterior cruciate ligament reconstruction—a process of ligamentization? An experimental study in a sheep model. Am J Sports Med 20(5):558–566PubMedCrossRefGoogle Scholar
  8. 8.
    Bosch U et al (1994) The patellar tendon graft for PCL reconstruction. Morphological aspects in a sheep model. Acta Orthop Belg 60(Suppl 1):57–61PubMedGoogle Scholar
  9. 9.
    Cho S et al (2004) Electron microscopic evaluation of two-bundle anatomically reconstructed anterior cruciate ligament graft. J Orthop Sci 9(3):296–301PubMedCrossRefGoogle Scholar
  10. 10.
    Clancy WG Jr et al (1981) Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Joint Surg Am 63(8):1270–1284PubMedGoogle Scholar
  11. 11.
    Falconiero RP, DiStefano VJ, Cook TM (1998) Revascularization and ligamentization of autogenous anterior cruciate ligament grafts in humans. Arthroscopy 14(2):197–205PubMedCrossRefGoogle Scholar
  12. 12.
    Flint MH et al (1984) Collagen fibril diameters and glycosaminoglycan content of skins—indices of tissue maturity and function. Connect Tissue Res 13(1):69–81PubMedCrossRefGoogle Scholar
  13. 13.
    Goradia VK et al (2000) Tendon-to-bone healing of a semitendinosus tendon autograft used for ACL reconstruction in a sheep model. Am J Knee Surg 13(3):143–151PubMedGoogle Scholar
  14. 14.
    Goradia VK et al (2000) Natural history of a hamstring tendon autograft used for anterior cruciate ligament reconstruction in a sheep model. Am J Sports Med 28(1):40–46PubMedGoogle Scholar
  15. 15.
    Grana WA et al (1994) An analysis of autograft fixation after anterior cruciate ligament reconstruction in a rabbit model. Am J Sports Med 22(3):344–351PubMedCrossRefGoogle Scholar
  16. 16.
    Howell SM et al (1995) Revascularization of a human anterior cruciate ligament graft during the first two years of implantation. Am J Sports Med 23(1):42–49PubMedCrossRefGoogle Scholar
  17. 17.
    Jackson DW et al (1991) The effects of in situ freezing on the anterior cruciate ligament. An experimental study in goats. J Bone Joint Surg Am 73(2):201–213PubMedGoogle Scholar
  18. 18.
    Jackson DW et al (1993) A comparison of patellar tendon autograft and allograft used for anterior cruciate ligament reconstruction in the goat model. Am J Sports Med 21(2):176–185PubMedCrossRefGoogle Scholar
  19. 19.
    Jackson JR et al (1997) Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. J Rheumatol 24(7):1253–1259PubMedGoogle Scholar
  20. 20.
    Johnson LL (1993) The outcome of a free autogenous semitendinosus tendon graft in human anterior cruciate reconstructive surgery: a histological study. Arthroscopy 9(2):131–142PubMedGoogle Scholar
  21. 21.
    Kawamura S et al (2005) Macrophages accumulate in the early phase of tendon-bone healing. J Orthop Res 23(6):1425–1432PubMedGoogle Scholar
  22. 22.
    Kleiner JB et al (1986) Origin of replacement cells for the anterior cruciate ligament autograft. J Orthop Res 4(4):466–474PubMedCrossRefGoogle Scholar
  23. 23.
    Kleiner JB et al (1989) Early histologic, metabolic, and vascular assessment of anterior cruciate ligament autografts. J Orthop Res 7(2):235–242PubMedCrossRefGoogle Scholar
  24. 24.
    Kuroda R et al (2000) Localization of growth factors in the reconstructed anterior cruciate ligament: immunohistological study in dogs. Knee Surg Sports Traumatol Arthrosc 8(2):120–126PubMedCrossRefGoogle Scholar
  25. 25.
    Liu SH et al (1995) Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res 318:265–278PubMedGoogle Scholar
  26. 26.
    Majima T et al (2003) Stress shielding of patellar tendon: effect on small-diameter collagen fibrils in a rabbit model. J Orthop Sci 8(6):836–841PubMedCrossRefGoogle Scholar
  27. 27.
    Marumo K et al (2005) The “ligamentization” process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons: a biochemical study. Am J Sports Med 33(8):1166–1173PubMedCrossRefGoogle Scholar
  28. 28.
    Murray MM et al (2000) Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am 82-A(10):1387–1397PubMedGoogle Scholar
  29. 29.
    Ng GY et al (1995) Biomechanics of patellar tendon autograft for reconstruction of the anterior cruciate ligament in the goat: three-year study. J Orthop Res 13(4):602–608PubMedCrossRefGoogle Scholar
  30. 30.
    Ng GY et al (1996) Long-term study of the biochemistry and biomechanics of anterior cruciate ligament-patellar tendon autografts in goats. J Orthop Res 14(6):851–856PubMedCrossRefGoogle Scholar
  31. 31.
    Ohno K et al (1993) Effects of complete stress-shielding on the mechanical properties and histology of in situ frozen patellar tendon. J Orthop Res 11(4):592–602PubMedCrossRefGoogle Scholar
  32. 32.
    Papageorgiou CD et al (2001) A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model. Am J Sports Med 29(5):620–626PubMedGoogle Scholar
  33. 33.
    Parry DA, Barnes GR, Craig AS (1978) A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond B Biol Sci 203(1152):305–321PubMedGoogle Scholar
  34. 34.
    Petersen W, Laprell H (2000) Insertion of autologous tendon grafts to the bone: a histological and immunohistochemical study of hamstring and patellar tendon grafts. Knee Surg Sports Traumatol Arthrosc 8(1):26–31PubMedCrossRefGoogle Scholar
  35. 35.
    Petersen W et al (2003) The angiogenic peptide vascular endothelial growth factor (VEGF) is expressed during the remodeling of free tendon grafts in sheep. Arch Orthop Trauma Surg 123(4):168–174PubMedGoogle Scholar
  36. 36.
    Rodeo SA et al (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 75(12):1795–1803PubMedGoogle Scholar
  37. 37.
    Rougraff BT, Shelbourne KD (1999) Early histologic appearance of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 7(1):9–14PubMedCrossRefGoogle Scholar
  38. 38.
    Rougraff B et al (1993) Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Am J Sports Med 21(2):277–284PubMedCrossRefGoogle Scholar
  39. 39.
    Roux W (1905) Die Entwicklungsmechanik; ein neuer Zweig der biologischen Wissenschaft, vols I & II. Wilhelm Engelmann, LeipzigGoogle Scholar
  40. 40.
    Scheffler SU et al (2005) The biological healing and restoration of the mechanical properties of free soft-tissue allografts lag behind autologous ACL reconstruction in the sheep model. Trans Orthop ResGoogle Scholar
  41. 41.
    Shino K, Horibe S (1991) Experimental ligament reconstruction by allogeneic tendon graft in a canine model. Acta Orthop Belg 57(Suppl 2):44–53PubMedGoogle Scholar
  42. 42.
    Shino K et al (1984) Replacement of the anterior cruciate ligament by an allogeneic tendon graft. An experimental study in the dog. J Bone Joint Surg Br 66(5):672–681PubMedGoogle Scholar
  43. 43.
    Spindler KP et al (1996) Distribution of cellular repopulation and collagen synthesis in a canine anterior cruciate ligament autograft. J Orthop Res 14(3):384–389PubMedCrossRefGoogle Scholar
  44. 44.
    Tohyama H, Yasuda K (1998) Significance of graft tension in anterior cruciate ligament reconstruction. Basic background and clinical outcome. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S30–S37PubMedCrossRefGoogle Scholar
  45. 45.
    Tohyama H, Yasuda K (2000) Extrinsic cell infiltration and revascularization accelerate mechanical deterioration of the patellar tendon after fibroblast necrosis. J Biomech Eng 122(6):594–599PubMedCrossRefGoogle Scholar
  46. 46.
    Tohyama H, Yasuda K (2002) The effect of increased stress on the patellar tendon. J Bone Joint Surg Br 84(3):440–446PubMedCrossRefGoogle Scholar
  47. 47.
    Tomita F et al (2001) Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 17(5):461–476PubMedGoogle Scholar
  48. 48.
    Tsuchida T et al (1997) Effects of in situ freezing and stress-shielding on the ultrastructure of rabbit patellar tendons. J Orthop Res 15(6):904–910PubMedCrossRefGoogle Scholar
  49. 49.
    Unterhauser FN et al (2003) Endoligamentous revascularization of an anterior cruciate ligament graft. Clin Orthop Relat Res (414):276–288Google Scholar
  50. 50.
    Unterhauser FN et al (2004) Alpha-smooth muscle actin containing contractile fibroblastic cells in human knee arthrofibrosis tissue. Winner of the AGA-DonJoy Award 2003. Arch Orthop Trauma Surg 124(9):585–591PubMedCrossRefGoogle Scholar
  51. 51.
    Weiler A et al (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med 29(6):751–761PubMedGoogle Scholar
  52. 52.
    Weiler A et al (2002) Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18(2):124–135PubMedGoogle Scholar
  53. 53.
    Weiler A et al (2002) Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18(2):113–123PubMedGoogle Scholar
  54. 54.
    Weiler A et al (2002) Alpha-smooth muscle actin is expressed by fibroblastic cells of the ovine anterior cruciate ligament and its free tendon graft during remodeling. J Orthop Res 20(2):310–317PubMedCrossRefGoogle Scholar
  55. 55.
    Weiler A et al (2004) The influence of locally applied platelet-derived growth factor-BB on free tendon graft remodeling after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):881–891PubMedCrossRefGoogle Scholar
  56. 56.
    Yoshikawa T et al (2006) Expression of vascular endothelial growth factor and angiogenesis in patellar tendon grafts in the early phase after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14(9):804–810 PubMedCrossRefGoogle Scholar
  57. 57.
    Yoshikawa T et al (2006) Effects of local administration of vascular endothelial growth factor on mechanical characteristics of the semitendinosus tendon graft after anterior cruciate ligament reconstruction in sheep. Am J Sports Med 34(12):1918–1925PubMedCrossRefGoogle Scholar
  58. 58.
    Zaffagnini S et al (2007) Neoligamentization process of BTPB used for ACL graft: histological evaluation from 6 months to 10 years. Knee 14(2):87–93PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. U. Scheffler
    • 1
  • F. N. Unterhauser
    • 1
  • A. Weiler
    • 2
  1. 1.Center for Musculoskeletal SurgeryCharité, University Medicine BerlinBerlinGermany
  2. 2.Zentrum für Spezielle GelenkchirurgieBerlinGermany

Personalised recommendations